• Title/Summary/Keyword: Blood lactate

Search Result 399, Processing Time 0.035 seconds

Near-Infrared Spectroscopy for Monitoring Cerebral Hemodynamics in Hyperbilirubinemia-induced Newborn Piglets (고빌리루빈혈증이 유도된 신생자돈에서 근적외석 발광기를 이용한 뇌 혈역학적 변화에 대한 연구)

  • Hwang, Jong Hee;Choi, Chang Won;Chang, Yun Sil;Park, Won Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.6
    • /
    • pp.649-654
    • /
    • 2005
  • Purpose : The present study examined how changes in cerebral hemodynamics in newborn piglets with bilirubin infusion can be evaluated by near infrared sepctroscopy(NIRS). Methods : Seventeen newborn piglets were randomly divided into the following three experimental groups : six in the control group(CG); seven in the bilirubin infusion group(BG), and four in the bilirubin infusion with 7-nitroindazole group(NG). To achieve the concentration of bilirubin above 20 mg/dL, we injected a bolus of 40 mg/kg of bilirubin intravenously, followed by 30 mg/kg/hr of bilirubin continuous intravenous infusion. All groups were monitored with cerebral hemodynamics using near infrared spectroscopy(NIRS) and their brain cortexes were harvested and the activities of $Na^+$, $K^+$-ATPase, level of conjugated dienes, ATP and phosphocreatine(PCr) were determined biochemically. Results : No changes took place in CG. In BG and NG, base excess, pH, and MABP decreased, and lactate level in blood increased. Cerebral $Na^+$, $K^+$-ATPase activity and ATP, PCr level in BG significantly decreased and conjugated dienes increased compared to CG. These abnormalities observed in the BG were significantly improved in the NG. In continuous NIRS monitoring, [$HbO_2$], [HbT], and [HbD] in BG were significantlly decreased compared to CG. However these abnormalities between NG and CG were not significantly different. There were no significant differences in $ScO_2$ between the study groups. Conclusion : Our study suggests cerebral hemodynamic changes could be monitored by non-invasive NIRS in newborn piglets with bilirubin infusion.

Antioxidant and hepatoprotective effects of Korean ginseng extract GS-KG9 in a D-galactosamine-induced liver damage animal model

  • Jo, Yun Ho;Lee, Hwan;Oh, Myeong Hwan;Lee, Gyeong Hee;Lee, You Jin;Lee, Ji Sun;Kim, Min Jung;Kim, Won Yong;Kim, Jin Seong;Yoo, Dae Seok;Cho, Sang Won;Cha, Seon Woo;Pyo, Mi Kyung
    • Nutrition Research and Practice
    • /
    • v.14 no.4
    • /
    • pp.334-351
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: This study was designed to investigate the improvement effect of white ginseng extract (GS-KG9) on D-galactosamine (Ga1N)-induced oxidative stress and liver injury. SUBJECTS/METHODS: Sixty Sprague-Dawley rats were divided into 6 groups. Rats were orally administrated with GS-KG9 (300, 500, or 700 mg/kg) or silymarin (25 mg/kg) for 2 weeks. The rats of the GS-KG9- and silymarin-treated groups and a control group were then intraperitoneally injected Ga1N at a concentration of 650 mg/kg for 4 days. To investigate the protective effect of GS-KG9 against GalN-induced liver injury, blood liver function indicators, anti-oxidative stress indicators, and histopathological features were analyzed. RESULTS: Serum biochemical analysis indicated that GS-KG9 ameliorated the elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in GalN-treated rats. The hepatoprotective effects of GS-KG9 involved enhancing components of the hepatic antioxidant defense system, including glutathione, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). In addition, GS-KG9 treatment inhibited reactive oxygen species (ROS) production induced by GalN treatment in hepatocytes and significantly increased the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins, which are antioxidant proteins. In particular, by histological analyses bases on hematoxylin and eosin, Masson's trichrome, α-smooth muscle actin, and transforming growth factor-β1 staining, we determined that the administration of 500 mg/kg GS-KG9 inhibited hepatic inflammation and fibrosis due to the excessive accumulation of collagen. CONCLUSIONS: These findings demonstrate that GS-KG9 improves GalN-induced liver inflammation, necrosis, and fibrosis by attenuating oxidative stress. Therefore, GS-KG9 may be considered a useful candidate in the development of a natural preventive agent against liver injury.

Antioxidant and anti-fatigue effects of abalone (Haliotis discus hannai) composites containing natural plants (전복 복합물의 항산화능 및 피로개선 효과)

  • Lee, Soo-Jung;Oh, Soo-Jeong;Kang, Min-Jung;Shin, Jung-Hye;Kang, Shin-Kwon
    • Food Science and Preservation
    • /
    • v.22 no.4
    • /
    • pp.598-606
    • /
    • 2015
  • To develop a functional drink using abalone, two abalone composites (APM-1, APM-2) were prepared by mixing the abalone and natural plants (Lycii fructus and Rubus coreanus Miq.). Their antioxidant and anti-fatigue effects were evaluated using rats running on a treadmill after 4 weeks supplementation of the abalone composites. Experimental groups were divided into four groups including normal (non-exercised group), control (exercised group), one dose per day (EAPM-1), and three doses per day (EAPM-2) with exercise by running. Antioxidant activities, and total phenols and flavonoids contents of APM-2 were significantly higher than those of APM-1 (p<0.05). Total lipid content in serum of EAPM-2 was significantly lower than that of control group (p<0.05). Lactate dehydrogenase activity and blood urea nitrogen content of EAPM-1 and EAPM-2 groups were significantly lower than that of control group. There were no significant difference in aspartate aminotransferase activity among control, EAPM-1 and EAPM-2 groups. In the meanwhile, alanine aminotransferase and alkaline phosphatase activities were significantly lower than that of control group. In serum and liver tissues of EAPM-1 and EAPM-2 groups, lipid peroxide contents significantly decreased compared to control group. DPPH radical scavenging activities in liver tissues of EAPM-1 and EAPM-2 groups were significantly higher than those of control group. Therefore, abalone composites were effective for the alleviation of oxidative stress caused by treadmill running, which was dependent on antioxidant activity and phenolic compounds content.

Effects of Red-Koji Fermented Scutellariae Radix Extracts on Lipopolysaccharide-induced Rat Acute Lung Injury (홍국발효 황금이 Lipopolysaccharide 유발 급성 폐손상에 미치는 영향)

  • Kim, Koang Lok;Kwon, Kyoung Man;Yun, Yong Jae;Lee, Young Jun;Park, Dong Il;Kim, Jong Dae;Jung, Tae Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.6
    • /
    • pp.874-885
    • /
    • 2012
  • In the present study, the possibility of whether the pharmacological effects of Scutellariae Radix Aqueous Extracts(SR) were favorably changed by report that lipopolysaccharide(LPS)-induced rat acute lung injury was treated with Red-Koji(Monascus purpureus 12002) fermentation. Three different dosages of Red-Koji fermented SR extract(fSR), 125, 250 and 500 mg/kg were orally administered once a day for 28 days before LPS(Escherichia coli 0111:B4) treatments, and then 5 hours after LPS treatment(500 ${\mu}g$/head, intra trachea instillation), all rats were sacrificed. Changes in the body weights, lung weights, pulmonary transcapillary albumin transit, arterial gas parameters(pH, $PaO_2$ and $PaCO_2$) bronchoalveolar lavage fluid(BALF) protein, lactate dehydrogenase(LDH) and proinflammatory cytokine tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), interleukin-$1{\beta}$(IL-$1{\beta}$) contents, total cell numbers, neutrophil and alveolar macrophage ratios, lung malondialdehyde(MDA), myeloperoxidase(MPO), proinflammatory cytokine TNF-${\alpha}$ and IL-$1{\beta}$ contents were observed with histopathology of the lung, changes on luminal surface of alveolus(LSA), thickness of alveolar septum, number of polymorphonuclear neutrophils(PMNs). As results of LPS-injection, dramatical increases in lung weights, pulmonary transcapillary albumin transit increases in $PaCO_2$, decreases in pH of arterial blood and $PaO_2$, increases of BALF protein, LDH, TNF-${\alpha}$ and IL-$1{\beta}$ contents, total cells, neutrophil and alveolar macrophage ratios, lung MDA, MPO, TNF-${\alpha}$ and IL-$1{\beta}$ contents increases were detected with decreases in LSA and increases of alveolar septum and PMNs numbers, respectively as compared with intact control. Especially fSR 125 mg/kg showed quite similar favorable effects on the LPS-induced acute lung injuries as compared with 60 mg/kg of ${\alpha}$-lipoic acid and 250 mg/kg of SR. The results suggest that over 125 mg/kg of fSR extracts showed favorable effects on the LPS-induced acute lung injury mediated by their antioxidant and anti-inflammatory effects. Moreover, increases of the pharmacological effects of SR on LPS-induced acute lung injury were observed by Red-Koji fermentation in this study, at least 2-fold higher.

Effect of Simulated Heat Stress on Digestibility, Methane Emission and Metabolic Adaptability in Crossbred Cattle

  • Yadav, Brijesh;Singh, Gyanendra;Wankar, Alok;Dutta, N.;Chaturvedi, V.B.;Verma, Med Ram
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1585-1592
    • /
    • 2016
  • The present experiment was conducted to evaluate the effect of simulated heat stress on digestibility and methane ($CH_4$) emission. Four non-lactating crossbred cattle were exposed to $25^{\circ}C$, $30^{\circ}C$, $35^{\circ}C$, and $40^{\circ}C$ temperature with a relative humidity of 40% to 50% in a climatic chamber from 10:00 hours to 15:00 hours every day for 27 days. The physiological responses were recorded at 15:00 hours every day. The blood samples were collected at 15:00 hours on 1st, 6th, 11th, 16th, and 21st days and serum was collected for biochemical analysis. After 21 days, fecal and feed samples were collected continuously for six days for the estimation of digestibility. In the last 48 hours gas samples were collected continuously to estimate $CH_4$ emission. Heat stress in experimental animals at $35^{\circ}C$ and $40^{\circ}C$ was evident from an alteration (p<0.05) in rectal temperature, respiratory rate, pulse rate, water intake and serum thyroxin levels. The serum lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase activity and protein, urea, creatinine and triglyceride concentration changed (p<0.05), and body weight of the animals decreased (p<0.05) after temperature exposure at $40^{\circ}C$. The dry matter intake (DMI) was lower (p<0.05) at $40^{\circ}C$ exposure. The dry matter and neutral detergent fibre digestibilities were higher (p<0.05) at $35^{\circ}C$ compared to $25^{\circ}C$ and $30^{\circ}C$ exposure whereas, organic matter (OM) and acid detergent fibre digestibilities were higher (p<0.05) at $35^{\circ}C$ than $40^{\circ}C$ thermal exposure. The $CH_4$ emission/kg DMI and organic matter intake (OMI) declined (p<0.05) with increase in exposure temperature and reached its lowest levels at $40^{\circ}C$. It can be concluded from the present study that the digestibility and $CH_4$ emission were affected by intensity of heat stress. Further studies are necessary with respect to ruminal microbial changes to justify the variation in the digestibility and $CH_4$ emission during differential heat stress.

The Effects of Dietary Interventions on mRNA Expression of Peroxisome Proliferator Activated Receptor Isoforms (PPAR Isoforms) in Rat Skeletal Muscle (장기간의 고지방 식이 섭취가 골격근 내 PPAR Isoforms 유전자 발현에 미치는 영향)

  • Lee, Jang-Kyu;Kim, Jung-Kyu;Moon, Hee-Won;Shin, Young-Oh;Lee, Jong-Sam
    • Journal of Nutrition and Health
    • /
    • v.40 no.3
    • /
    • pp.221-228
    • /
    • 2007
  • We determined the effects of dietary manipulations on messenger RNA of peroxisome proliferators activated receptor isoforms (i.e., PPAR ${\alpha},\;{\beta}/{\delta},\;{\gamma}$) in red vastus lateralis muscle of rats. Total 16 male Sprague-Dawley rats were used, and animals were divided into one of two dietary conditions: either chow diet group (CHOW; n=8) in which animals were 134 with standard rodent chow (61.8% carbohydrate, 15.7% fat, 22.5% protein) or high fat diet group (FAT n=8) in which animals were fed 24.3% carbohydrate, 52.8% fat, 22.9% protein. At the end of the 8 weeks of experimental period, red vastus lateralis muscle was dissected out from all animals, and PPAR ${\alpha},\;{\beta}/{\delta},\;{\gamma}$ mRNA expression was determined. There was no significant difference in body mass (BM) between CHOW and FAT. As expected, blood glucose and free fatty acid (FFA) concentration was higher in FAT than CHOW (p<0.05), and lactate concentration was significantly lower in FAT compared to CHOW (p<0.05). Insulin concentration tended to higher in FAT than CHOW ($67.2{\pm}21.9\;vs.\;27.0{\pm}5.2$ pmol/L), but it did not reach to the statistical significance. Gene expression of PPAR ${\alpha}$ was not significantly different between CHOW and FAT. It was not also significantly different in PPAR ${\beta}/{\delta}$. Interestingly, expression of mRNA in PPAR ${\gamma}$ however, was markedly depressed in FAT compared to CHOW (approximately 3 fold higher in CHOW; p<0.05). Results obtained from present study implies that PPAR ${\gamma}$ (as compensatory function of PPAR ${\alpha}$ is expressed) possibly exerts another major tuning roles in fatty acid transport, utilization, as well as biosynthesis in skeletal muscle cells. The situations and conditions that can be postulated for this implication need to be further examined.

Effects of Dietary Fatty Acid Composition on Pro- and Macro-Glycogen Utilization and Resynthesis in Rat Skeletal Muscle (식이 지방산 종류가 운동 시 조직 내 Pro-및 Macro-Glycogen의 동원 및 재합성에 미치는 영향)

  • Lee, Jong-Sam;Kim, Jae-Chul;Kwon, Young-Woo;Lee, Jang-Kyu;Lee, Jeong-Pil;Yoon, Chung-Soo
    • Journal of Nutrition and Health
    • /
    • v.40 no.3
    • /
    • pp.211-220
    • /
    • 2007
  • The purpose of this study was to investigate that the effect of dietary fatty acid composition on pro- and macro-glycogen utilization and resynthesis. The analyses were further extended for different muscle fibers (type I, type II, & type IIb) as well as tissues (i.e., liver & heart). Total one hundred sixty Sprague-Dawley rats were used, and rats were randomly allocated into four experimental groups: animals fed standard chow diet (n=40), animals fed saturated fatty acid diet (n=40), animals fed monounsaturated fatty acid (n=40), and animals fed polyunsaturated fatty acid (n=40). Animals in each groups were further divided into five subgroups: sacrificed at REST (n=8), sacrificed at immediately after 3 hr swim exercise (P-0HR, n=8), sacrificed at one hour after 3 hr swim exercise (P-1HR, n=8), sacrificed at four hour after 3 hr swim exercise (P-4HR, n=8), and sacrificed at twenty-four hour after 3 hr swim exercise (P-24HR, n=8). Soleus (type I), red gastrocnemius (type IIa), white gastrocnemius (type IIb), liver, and heart were dissected out at appropriated time point from all animals, and were used for analyses of pro- & macro-glycogen concentrations. After 8 weeks of dietary interventions, there was no significant difference in body mass in any of dietary conditions (p>.05). After 3 hr swim exercise, blood lactate level was higher compared to resting conditions in all groups, but it was returned to resting value after 1 hr rest (p<.05). Free fatty acid concentration was higher in all high fat fed groups(regardless of fatty acid composition) than CHOW consumed group. At rest, pro- & macro-glycogen concentration was not different from any of experimental groups (p>.05). Regardless of forms of glycogen, the highest level was observed in liver (p<.01), and most cases of supercompensation after 3hr exercise observed in this study were occurred in CHOW fed tissues. Except heart muscle, all tissues used in this study showed that pro- and macro-glycogen concentration was significantly decreased after 3 hr exercise. Based on these results, two conclusions were made: first, there is no different level of glycogen content in various tissues regardless of types of fatty acids consumed and second, the highest mobilization rate would be demonstrated from CHOW fed animals compare to animals that consumed any kinds of fatty acid diet if prolonged exercise is applied.

Twenty-Eight-Day Repeated Inhalation Toxicity Study of Nano-Sized Neodymium Oxide in Male Sprague-Dawley Rats

  • Kim, Yong-Soon;Lim, Cheol-Hong;Shin, Seo-Ho;Kim, Jong-Choon
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.239-253
    • /
    • 2017
  • Neodymium is a future-oriented material due to its unique properties, and its use is increasing in various industrial fields worldwide. However, the toxicity caused by repeated exposure to this metal has not been studied in detail thus far. The present study was carried out to investigate the potential inhalation toxicity of nano-sized neodymium oxide ($Nd_2O_3$) following a 28-day repeated inhalation exposure in male Sprague-Dawley rats. Male rats were exposed to nano-sized $Nd_2O_3-containing$ aerosols via a nose-only inhalation system at doses of $0mg/m^3$, $0.5mg/m^3$, $2.5mg/m^3$, and $10mg/m^3$ for 6 hr/day, 5 days/week over a 28-day period, followed by a 28-day recovery period. During the experimental period, clinical signs, body weight, hematologic parameters, serum biochemical parameters, necropsy findings, organ weight, and histopathological findings were examined; neodymium distribution in the major organs and blood, bronchoalveolar lavage fluid (BALF), and oxidative stress in lung tissues were analyzed. Most of the neodymium was found to be deposited in lung tissues, showing a dose-dependent relationship. Infiltration of inflammatory cells and pulmonary alveolar proteinosis (PAP) were the main observations of lung histopathology. Infiltration of inflammatory cells was observed in the $2.5mg/m^3$ and higher dose treatment groups. PAP was observed in all treatment groups accompanied by an increase in lung weight, but was observed to a lesser extent in the $0.5mg/m^3$ treatment group. In BALF analysis, total cell counts, including macrophages and neutrophils, lactate dehydrogenase, albumin, interleukin-6, and tumor necrosis factor-alpha, increased significantly in all treatment groups. After a 4-week recovery period, these changes were generally reversed in the $0.5mg/m^3$ group, but were exacerbated in the $10mg/m^3$ group. The lowest-observed-adverse-effect concentration of nano-sized $Nd_2O_3$ was determined to be $0.5mg/m^3$, and the target organ was determined to be the lung, under the present experimental conditions in male rats.

An Empirical Study of the Clinically Reportable Range in Clinical Chemistry (임상보고 가능범위의 실증적 연구)

  • Chang, Sang-Wu;Lee, Sang-Gon;Choi, Ho-Seong;Song, Eun-Young;Park, Yong-Won;Lee, In-Ae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.39 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • The purpose of the clinically reportable range (CRR) in clinical chemistry is to estimate linearity in working range. The reportable range includes all results that may be reliably reported, and embraces two types of ranges: the analytical measurement range (AMR) is the range of analyte values that a method can directly measure on the specimen without any dilution, concentration, or other pretreatment not part of the usual assay process. CAP and JCAHO require linearity on analyzers every six months. The clinically reportable range is the range of analyte values that a method can measure, allowing for specimen dilution, concentration, or other pretreatment used to extend the direct analytical measurement range. The AMR cannot exceed the manufacturer's limits. Establishing AMR is easily accomplished with Calibration Verification Assessment and experimental Linearity. For example: The manufacturer states that the limits of the AST on their instrument are 0-1100. The lowest level that could be verified is 2. The upper level is 1241. The verified AMR of the instrument is 2-1241. The lower limit of the range is 2, because that is the lowest level that could be verified by the laboratory. The laboratory could not use the manufacturer's lower limit of 2 because they have not proven that the instrument values below 2 are valid. The upper limit of the range is 1241, because although the lab has shown that the instrument is linear to 1241, the manufacturer does not make that claim. The laboratory needs to demonstrate the accuracy and precision of the analyzer, as well the validation of the patient AMR. Linearity requirements have been eliminated from the CLIA regulations and from the CAP inspection criteria, however, many inspectors continue to feel that linearity studies are a part of good lab practice and should be encouraged. If a lab chooses to continue linearity studies, these studies must fully comply with the calibration/calibration verification requirements of CLIA and/or CAP. The results of lower limit and upper limit of clinically reportable range were total protein (2.1 - 79.9), albumin (1.3 - 39), total bilirubin (0.2 - 106.2), alkaline phosphatase (13 - 6928.2), aspartate aminotransferase (24 - 7446), alanine aminotransferase (13 - 6724.2), gamma glutamyl transpeptidase (16.64 - 9904.2), creatine kinase (15.26 - 4723.8), lactate dehydrogenase (127.66 - 13231.8), creatinine (0.4 - 129.6), blood urea nitrogen (8.67 - 925.8), uric acid (1.6 - 151.2), total cholesterol (48.52 - 3162), triglycerides (36.91 - 3367.8), glucose (31 - 4218), amylase (21 - 6694.2), calcium (3.1 - 118.2), inorganic phosphorus (1.11 - 108), HDL (11.74 - 666), NA (58.3 - 1800), K (1.0 - 69.6), CL (38 - 1230).

  • PDF

Role of Mitochondria in Oxidative Damage of Post-Ischemic Reperfused Hearts (허혈/재관류 심장의 산화손상에서 미토콘드리아의 역할)

  • Park, Jong-Wan;Chun, Yang-Sook;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.201-209
    • /
    • 1996
  • Restoration of the blood flow after a period of ischemia is accompanied by generation of toxic oxygen radicals. This phenomenon may account for the occurrence of reperfusion-mediated tissue injury in ischemic hearts. In in vitro studies, although oxygen radicals can be generated from a variety of sources, including xanthine oxidase system, activated leucocytes, mitochondria and others, the most important source and mechanism of oxygen radical production in the post-ischemic reperfused hearts is unclear. In the present study, we tested the hypothesis that the respiratory chain of mitochondria might be an important source of oxygen radicals which are responsible for the development of the reperfusion injury of ischemic hearts. Langendorff-perfused, isolated rat hearts were subjected to 30 min of global ischemia at $37^{\circ}C$, followed by reperfusion. Amytal, a reversible inhibitor of mitochondrial respiration, was employed to assess the mitochondrial contributions to the development of the reperfusion injury. Intact mitochonria were isolated from the control and the post-ischemic reperfused hearts. Mitochondrial oxygen radical generation was measured by chemiluminescence method and the oxidative tissue damage was estimated by measuring a lipid peroxidation product, malondialdehyde(MDA). To evaluate the extent of the reperfusion injury, post-ischemic functional recovery and lactate dehydrogenase(LDH) release were assessed and compared in Amytal-treated and -untreated hearts. Upon reperfusion of the ischemic hearts, MDA release into the coronary effluent was markedly increased. MDA content of mitochondria isolated from the post-ischemic reperfused hearts was increased to 152% of preischemic value, whereas minimal change was observed in extramitochondrial fraction. The generation of superoxide anion was increased about twice in mitochondria from the reperfused hearts than in those from the control hearts. Amytal inhibited the mitochondrial superoxide generation significantly and also suppressed MDA production in the reperfused hearts. Additionally, Amytal prevented the contractile dysfunction and the increased release of LDH observed in the reperfused hearts. In conclusion, these results indicate that the respiratory chain of mitochondria may be an important source of oxygen radical formation in post-ischemic reperfused hearts, and that oxygen radicals originating from the mitochondria may contribute to the development of myocardial reperfusion injury.

  • PDF