• Title/Summary/Keyword: Blocking effect of UV

Search Result 59, Processing Time 0.024 seconds

Functional Characterization of the Extracts from Nipa Palm, Molokhia, and Finger Root for Cosmetic Ingredients (니파팜, 몰로키아, 핑거루트 추출물의 화장품 소재로서의 기능적 특성 분석)

  • Jun, Yue Jin;Lee, Sohyun;Heo, Sojeong;Jin, Byung Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.821-829
    • /
    • 2019
  • This study was conducted to evaluate the applicability of the extracts from nipa palm, molokhia, and finger root in functional cosmetics as a natural active ingredient. The extracts were obtained through the processes of heating under reflux with ethanol, filtration, concentration, and freeze-drying. UV absorption and blocking effects of the extracts were examined by using the UV-vis spectrophotometer equipped with an integrating sphere. Antioxidant activity and its stability between the extracts were compared using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Also, total polyphenol content in the extracts was determined quantitatively using the Folin-Ciocalteu reagent, with gallic acid as the standard. Antibacterial activity of the extracts was investigated by the disc diffusion test against Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative). Finally, collagenase inhibitor assay was performed to examine the anti-wrinkle effect of the extracts. From the results of this study, the extract of nipa palm showed the potential for use in cosmetics as an antioxidant and anti-wrinkle agent, and the extract of finger root as a sunscreen and antibacterial agent.

Characteristics of Non-nano Needle Type Zinc Oxide and Its Application in Sunscreen Cosmetics (Non-nano 막대형 산화아연의 특성 및 자외선 차단용 화장품에의 응용)

  • Chong, Kyo Un;Xuan, Song Hua;Yoon, Yeo Min;Kim, Sang-uk;Choi, Bou Kun;Lee, Sung Ho;Park, Soo Nam;Lee, Jong Sung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • With increasing interest in the effectiveness and safety of sunscreen worldwide, research on the development of new inorganic sunscreen is also gaining momentum. In the present study, non-nano sized needle type zinc oxide, which can meet the regulation of nano-material as a recent problem, has been synthesized and surface-modified with cetyl alcohol to obtain needle type zinc oxide powder. Here, we also investigated their physical properties and evaluated their potential application as sunscreens. As a result of the experiment, the sunscreen with needle type zinc oxide powder, which was non-nano, showed similar UV-protection properties and transparency compare to that of 40nm size zinc oxide. It was further confirmed that the UV blocking effect was significantly increased when the needle type zinc oxide dispersion was applied to the sunscreen. Therefore, although the needle type zinc oxide is non-nano (200 nm) material, it has the potential to be applied to the product as an excellent transparency (improvement of whiteness), UV protection efficacy and smooth texture.

Development of Multifunctional Natural Sunscreen (BHC-S) Having Sunscreening and Anti-wrinkle (주름개선 자외선 차단효과를 갖는 다기능성 천연 자외선 차단제(BHC-S) 개발)

  • Kim, Chul;Jeong, Sae Byeol;Im, Gyeong Hyeon;Gang, Myeong Hwan;An, Jun Hyuk;Kim, Jin Hee;Lee, Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.321-327
    • /
    • 2017
  • This study was carried out to develop a stable plant-derived natural sunscreen (BHC-S) that replaces the artificially synthesized organic sunscreen agents. The natural sunscreen (BHC-S), which is composed of peanut extract, Centella asiatica extract, and Ecklonia stolonifera extract, has the same level of ultraviolet shielding effect as PARSOL MCX-XR (OMC), which is a synthetic sunscreen. and has safety against skin. MultiFunctional effect such as and anti-wrinkle improvement. Thus, it can be used as raw material for natural cosmetics for ultraviolet ray blocking, and anti-aging.

Protective Effects of Vitamin C against Genomic DNA Damage Caused by Genotoxicants (유전독성물질의 유전체 손상 작용에 대한 Vitamin C의 방호효과)

  • Yu, Gyeong Jin;Lee, Chun Bok
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.963-969
    • /
    • 2013
  • Although it is popularly believed that vitamin C protects cells from various genotoxicants, the degrees and mechanisms of itsprotective actions are not fully understood. In this study, vitamin C's protective effects against various genotoxicants were quantified, together with subsequent analyses on the mechanisms of these protective effects. Comet assay was employed to measure the degree of DNA damage in Chinese hamster ovary cells (CHO-K1) exposed to five genotoxicants, $H_2O_2$, $HgCl_2$, N-methyl-N-nitro-N-nitrosoguanidine (MNNG), 4-nitroquinoline-1-oxide (4NQO), and UV-irradiation. In cases cells were treated with $H_2O_2$, $HgCl_2$, and 4NQO together with vitamin C, the damage to DNA decreased to the level of the control group. In cases of UV-irradiation, the protective effect of vitamin C appeared, but did not reach the control levels. Interestingly, vitamin C did not have protective effects against the genotoxicity of MNNG. The degrees of DNA damage of cells treated with vitamin C prior to exposure togenotoxicants were 28~49% lower than those of cells treated with vitamin C after being exposed to genotoxicants. In conclusion, vitamin C had strong antioxidanteffects against genotoxicants by being a primary antioxidant blocking genotoxicity reaching the cells, rather than being a secondary antioxidant acting on post-exposure DNA repair processes. However, vitamin C's protective effects appearto be limited, as there are genotoxicants, such as MNNG, whosegenotoxicityis not affected by vitamin C. Therefore, the results of this study warrant furtherstudies on toxic mechanisms of genotoxicants and their interactions with protective mechanisms of vitamin C.

Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/Smad Pathways

  • Yun, Mann-Seok;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1349-1360
    • /
    • 2019
  • Chronic exposure to ultraviolet (UV) radiation, regarded as a major cause of extrinsic aging or photoaging characterized by wrinkle formation and skin dehydration, exerts adverse effects on skin by causing the overproduction of reactive oxygen species. Agastache rugosa Kuntze, known as Korean mint, possesses a wide spectrum of biological properties including anti-oxidation, anti-inflammation, and anti-atherosclerosis. Previous studies have reported that A. rugosa protected human keratinocytes against UVB irradiation by restoring the anti-oxidant defense system. However, the anti-photoaging effect of A. rugosa extract (ARE) in animal models has not yet been evaluated. ARE was orally administered to hairless mice at doses of 100 or 250 mg/kg/day along with UVB exposure for 12 weeks. ARE histologically improved UVB-induced wrinkle formation, epidermal thickening, erythema, and hyperpigmentation. In addition, ARE recovered skin moisture by improving skin hydration and transepidermal water loss (TEWL). Along with this, ARE increased hyaluronic acid levels by upregulating HA synthase genes. ARE markedly increased the density of collagen and the amounts of hydroxypoline via two pathways. First, ARE significantly downregulated the mRNA expression of matrix metalloproteinases responsible for collagen degradation by inactivating the mitogen-activated protein kinase/activator protein 1 pathway. Second, ARE stimulated the transforming growth factor beta/Smad signaling, consequently raising the mRNA levels of collagen-related genes. In addition, ARE not only increased the mRNA expression of anti-oxidant enzymes but also decreased inflammatory cytokines by blocking the protein expression of nuclear factor kappa B. Collectively, our findings suggest that A. rugosa may be a potential preventive and therapeutic agent for photoaging.

Formulation Studies for Surface Modification and Application to Cosmetics of Jadeite Powder (경옥 가루 표면 개질과 화장품에의 응용을 위한 제형 연구)

  • Kim, Yong Woo;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.167-177
    • /
    • 2019
  • The jadeite powder has a disadvantage affecting the stability of the formulation due to the agglomeration of the powder when applied to cosmetic formulations. To overcome this problem, a new composite powder was prepared by modifying the surface of jadeite powder and applied to foundation pact and sun stick. In this study, a triethoxycaprylylsilane among various surface modifiers was selected as an optimum component, and applied to each formulation by making the jadeite powder composite. As a result, the foundation pact maintained the clarity of the product color, and the sun stick gave about 30% higher UV blocking effect in the UVB area compared with that of the blank. In the user sensory evaluation, the formulation containing the jadeite powder composite showed a high score for the overall indicator. The stability evaluation of the formulation was also confirmed that it was stable against discoloration, detachment and hardness. In conclusion, the jadeite powder composite is stable as an inorganic pigment which is applicable to cosmetics as a multifunctional material while maintaining the color clarity of the product and acting as a booster for sunscreen agents.

Adsorption of phenol on metal treated by granular activated carbon (금속 침적처리에 따른 입상활성탄의 페놀흡착)

  • Kang, Kwang Cheol;Kim, Jin Won;Kwon, Soo Han;Kim, Seung Soo;Baik, Min Hoon;Choi, Jong Won
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.193-197
    • /
    • 2007
  • In this study, the effect of metal treatment on granular activated carbon (GAC) was investigated in the context of phenol adsorption. Cobalt(II) nitrate, and zinc(II) nitrate solution were used for metal treated. The specific surface area and the pore structure were evaluated from nitrogen adsorption data at 77 K. The phenol adsorption rates onto GAC were measured by UV-Vis spectrophotometer. Iodine adsorption capacity of Co-GAC is much better then that of the GAC. The Co-GAC with mesopore is more efficient than other adsorbents for the adsorption of polymer such as methyleneblue. The adsorption capacity of reference-GAC and metal-GAC were increased in order of Co-GAC>Zn-GAC>Reference-GAC, in spite of a decrease in specific surface area which was resulted from pore blocking by metal.

Sun Protection Factor (SPF) Assessment of the Sunscreen Composed of Natural Substances (천연물을 이용한 자외선차단제의 자외선차단지수(SPF) 평가)

  • Oh, In Young;Kim, So Young;Suk, Jang Mi;Jung, Sang Wook;Park, Jin Oh;Yoo, Kwang Ho;Li, Kapsok;Kim, Beom Joon;Kim, Myeung Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.2
    • /
    • pp.141-148
    • /
    • 2013
  • The harmful effects of ultraviolet (UV) radiation by increasing sun exposure are making people use sunscreens casually. To keep pace with this trend, many researches about mixing different ingredients or extracting effective ingredients from natural materials are conducted by cosmetics industry. In the present study, we evaluated the UV blocking effect of the sunscreen containing Scutellaria baicalensis Georgi extract. 10 volunteers were measured by minimal erythema dose (MED) and sun protection factor (SPF) of each product. The SPF results were $34.52{\pm}2.13$ and $32.67{\pm}1.44$ in the sunscreen containing Scutellaria baicalensis Georgi extract and that of not containing the substance, respectively. Although the difference of SPF between two products was statistically not significant, it is thought to be meaningful in evaluating clinical effects of the sunscreen using natural substance to humans without any adverse reaction.

The Effect of Blue Light Interception and SPF Boosting of Sunscreen Prepared with Bandgap-controlled TiO2 (밴드갭이 제어된 TiO2 를 이용한 자외선 차단제의 블루라이트 차단 및 SPF 부스팅 효과)

  • Sung Eun Wang;Jung Kyung Yoon;Gui Su Chung;Sung Bong Kye;Ho Sik Rho;Dae Soo Jung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.159-167
    • /
    • 2023
  • Titanium dioxide (TiO2) is commonly used in sunscreen formulations to protect the skin surface and prevent the penetration of harmful ultraviolet (UV) rays by the physical scattering action of light. However, a disadvantage of using TiO2 is that it can cause white turbidity when used on skin due to its inactive mineral ingredient. In addition, when TiO2 particles are reduced to nanosize to eliminate opacity, they can increase the transmittance of visible light and reduce whitening, but may lead to serious skin problems, such as allergic inflammation. To overcome these issues, the bandgap of TiO2 was controlled by adjusting the amount of oxygen defect and nitrogen amount, resulting in color TiO2 tailored to the skin. This innovative technology can reduce the whitening phenomenon and effectively block blue light, which is known to cause skin aging by inducing active oxygen. The bandgap controlled TiO2 compounds proposed in this study are hypoallergenic, broad-spectrum, and environmentally friendly. Furthermore, these compounds have been shown to significantly enhance sun protection factor (SPF) of sunscreens, demonstrating their compatibility with blue light blocking products.