• Title/Summary/Keyword: Block-oriented Modeling and Simulation

Search Result 5, Processing Time 0.017 seconds

BlockSim++: A Lightweight Block-oriented Hierarchical Modeling and Simulation Framework for Continuous Systems (BlockSim++: 연속시스템의 계층적 모델링 및 시뮬레이션을 위한 블록기반 경량 프레임워크)

  • Song, Hae-Sang;Se, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.11-22
    • /
    • 2012
  • This paper proposes for practical engineers a lightweight modeling and simulation environment for continuous system models specified in ordinary differential equations, which are time-domain specification of such systems. We propose a block-oriented specification formalism that has two levels: one for atomic behavior and the other the structure of models. Also we provide with a simulation framework, called BlockSim++, which make models specified in the block-oriented formalism be easily translated in object-oriented program that runs with the proposed simulation framework. The proposed formalism and framework has advantage of reuse such that it can be easily integrated into application programs and heterogeneous simulators. We illustrates the usefulness of the proposed framework by a simple hybrid modeling simulation example.

Transient Stability Analysis Based on OOP (객체지향기반 과도 안정도 해석)

  • Park, Ji-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.354-362
    • /
    • 2008
  • This paper presents the new method of power system transient stability simulation, which combines the desirable features of both the time domain technique based on OOP(Object-oriented Programming) and the direct method of transient stability analysis using detailed generator model. OOP is an alternative to overcome the problems associated with the development, maintenance and update of large software by electrical utilities. Several papers have already evaluated this approach for power system applications in areas such as load flow, security assessment and graphical interface. This paper applied the object-oriented approach to the problem of power system dynamics simulation. The modeling method is that each block of dynamic system block diagram is implemented as an object and connected each other. In the transient energy method, the detailed synchronous generator model is so-called two-axis model. For the excitation model, IEEE type1 model is used. The developed mothed was successfully applied to New England Test System.

Modeling and Simulation of Firewall System and Security Functions of Operating System for Network Security (네트워크 보안을 위한 침입차단 시스템과 운영체제 보안 기능 모델링 및 시뮬레이션)

  • 김태헌;이원영;김형종;김홍근;조대호
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.2
    • /
    • pp.1-16
    • /
    • 2002
  • The need for network security is being increasing due to the development of information communication and internet technology. In this paper, firewall models, operating system models and other network component models are constructed. Each model is defined by basic or compound model, referencing DEVS formalism. These models and the simulation environment are implemented with MODSIM III, a general purpose, modular, block-structured high-level programming language which provides direct support for object-oriented programming and discrete-event simulation. In this simulation environment with representative attacks, the following three attacks are generated, SYN flooding and Smurf attack as an attack type of denial of service, Mail bomb attack as an attack type of e-mail. The simulation is performed with the models that exploited various security policies against these attacks. The results of this study show that the modeling method of packet filtering system, proxy system, unix and windows NT operating system. In addition, the results of the simulation show that the analysis of security performance according to various security policies, and the analysis of correlation between availability and confidentiality according to security empowerment.

  • PDF

Modeling and Control of a Doubly-Fed Induction Generator (DFIG) Wind Power Generation System for Real-time Simulations

  • Byeon, Gil-Sung;Park, In-Kwon;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • This paper presents a study of a DFIG wind power generation system for real-time simulations. For real-time simulations, the Real-Time Digital Simulator (RTDS) and its user friendly interface simulation software RSCAD are used. A 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. The stator-flux oriented vector control scheme is applied to the stator/rotor side converter control, and the back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for a realistic, reliable and accurate simulation analysis. Block diagrams, a mathematical presentation of the DFIG and a control scheme of the stator/rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.

A Real-Time Graphic Driving Simulator of the Construction Vehicle (건설 차량 실시간 그래픽 주행 시뮬레이터)

  • Son, Kwon;Choi, Kyung-Hyun;You, Chang-Houn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.109-118
    • /
    • 1999
  • A graphic software is one of the most important components of the vehicle simulator. To increase a visual reality of the simulator, the graphic software should require several technologies such as three-dimensional graphics, graphic modeling of the vehicle and the environment, drivers biomechanical models, and real-time data processing. This study presents a real time graphic driving simulator of a construction vehicle. The graphic simulator contains the three models of the construction vehicle, the human, and the environment, and employes a neural network approach to decrease an on-line dynamic computation. An excavator model is represented using an object-oriented paradigm and contains the detailed information about a real-size vehicle. The human model is introduced for objective visual evaluations of the developed excavator model. Since the environment model plays an important role in a real-time simulator, a block-based approach is implemented and a text format is utilized for easier construction of environment. The simulation results are illustrated in order to demonstrate the applicability of developed models and the neural network approach.

  • PDF