• Title/Summary/Keyword: Block-noise

Search Result 638, Processing Time 0.031 seconds

Imaging Device Identification using Sensor Pattern Noise Based on Wiener Filtering (Wiener 필터링에 기반하는 센서 패턴 노이즈를 활용한 영상 장치 식별 기술 연구)

  • Lee, Hae-Yeoun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2153-2158
    • /
    • 2016
  • Multimedia such as image, audio, and video is easy to create and distribute with the advance of IT. Since novice uses them for illegal purposes, multimedia forensics are required to protect contents and block illegal usage. This paper presents a multimedia forensic algorithm for video to identify the device used for acquiring unknown video files. First, the way to calculate a sensor pattern noise using Wiener filter (W-SPN) is presented, which comes from the imperfection of photon detectors against light. Then, the way to identify the device is explained after estimating W-SPNs from the reference device and the unknown video. For the experiment, 30 devices including DSLR, compact camera, smartphone, and camcorder are tested and analyzed quantitatively. Based on the results, the presented algorithm can achieve the 96.0% identification accuracy.

A Study on Design of 2-stage LNA of LNB module for Ku-band (Ku-Band 위성통신용 LNB 수신단의 2단 LNA 설계)

  • Kwak, Yong-Soo;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2318-2320
    • /
    • 2005
  • In this paper, a low noise amplifier(LNA) in a receiver of a Low Noise Block Down Converter (LNB) for direct broadcasting service(DBS) is implemented using GaAs HEMT. The LNA is designed for the bandwidth of 11.7GHz-12.2GHz. The 2stage-LNA consists of a input matching circuit, a output matching circuit, DC-blocks and RF-chokes. The result of a simulation of the LNA using Advanced Design System(ADS) shows the noise figure less than 1.4dB, the gain greater than 23dB and the flatness of 1dB in the bandwidth of 11.7 to 12.2GHz.

  • PDF

Noise Reduction Algorithm For The Detection of Fine Ion Signals in Residual Gas Analyzer (잔류가스분석기의 질량 스펙트럼 검출 성능 향상을 위한 잡음제거 알고리즘)

  • Heo, Gyeongyong;Choi, Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.102-107
    • /
    • 2019
  • This paper proposes a method to improve the mass spectral detection performance of the residual gas analyzer. By improving the mode estimation method for setting the threshold value and improving the additive noise elimination method, it is possible to detect mass spectrums having low peak values of the threshold level difficult to distinguish from noise. Ion signal blocks for each mass index with noise removed by the improved method are effective for eliminating invalid ion signals based on the linear and quadratic fittings. The mass spectrum can be obtained from the quadratic fitted curves for the reconstructed ion signal block using only the valid ion signals. In addition, the resolution of the mass spectrum can be improved by correcting the error caused by the shift of the spectral peak position. To verify the performance of the proposed method, computer simulations were performed using real ion signals obtained from the residual gas analysis system under development. The simulation results show that the proposed method is valid.

STATISTICAL ALGORITHMS FOR ENGINE KNOCK DETECTION

  • Stotsky, A.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.259-268
    • /
    • 2007
  • A knock detection circuit that is based on the signal of an accelerometer installed on the engine block of a spark ignition automotive engine has a band-pass filter with a certain frequency as a parameter to be calibrated. A new statistical method for the determination of the frequency which is the most suitable for the knock detection in real-time applications is proposed. The method uses both the cylinder pressure and block vibration signals and is divided into two steps. In both steps, a new recursive trigonometric interpolation method that calculates the frequency contents of the signals is applied. The new trigonometric interpolation method developed in this paper improves the performance of the Discrete Fourier Transformation, allowing a flexible choice of the size of the moving window. In the first step, the frequency contents of the cylinder pressure signal are calculated. The knock is detected in the cylinder of the engine cycle for which at least one value of the maximal amplitudes calculated via the trigonometric interpolation method exceeds a threshold value indicating a considerable amount of oscillations in the pressure signal; this cycle is selected as a knocking cycle. In the second step, the frequency analysis is performed on the block vibration signal for the cycles selected in the previous step. The knock detectability, which is an individual cylinder attribute at a certain frequency, is verified via a statistical hypothesis test for testing the equality of two mean values, i.e. mean values of the amplitudes for knocking and non-knocking cycles. Signal-to-noise ratio is associated in this paper with the value of t-statistic. The frequency with the largest signal-to-noise ratio (the value of t-statistic) is chosen for implementation in the engine knock detection circuit.

MPEG-4 to H.264 Transcoding (MPEG-4에서 H.264로 트랜스코딩)

  • 이성선;이영렬
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.275-282
    • /
    • 2004
  • In this paper, a transcoding method that transforms MPEG-4 video bitstream coded in 30 Hz frame rate into H.264 video bitstream of 15 Hz frame rate is proposed. The block modes and motion vectors in MPEG-4 is utilized in H.264 for block mode conversion and motion vector (MV) interpolation methods. The proposed three types of MV interpolation method can be used without performing full motion estimation in H.264. The proposed transcoder reduces computation amount for full motion estimation in H.264 and provides good quality of H.264 video at low bitrates. In experimental results, the proposed methods achieves 3.2-4 times improvement in computational complexity compared to the cascaded pixel-domain transcoding, while the PSNR (peak signal to noise ratio) is degraded with 0.2-0.9dB depending on video sizes.

Blocking Artifacts Detection in Frequency Domain for Frame Rate Up-conversion (프레임율 변환을 위한 주파수 영역에서의 블로킹 현상 검출)

  • Kim, Nam-Uk;Jun, Dongsan;Lee, Jinho;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.472-483
    • /
    • 2016
  • This paper proposes a blocking artifacts detection algorithm in frequency domain for MC-FRUC (Motion Compensated Frame Rate Up-Conversion). Conventional MC-FRUC algorithms occur blocking artifacts near interpolated block boundaries since motion compensation is performed from block-based motion vector. For efficiently decreasing blocking artifacts, this paper analyses frequency characteristics of the interpolated frame and reduces blocking artifacts on block boundaries. In experimental results the proposed method shows better subjective quality than some conventional FRUC method and also increases the PSNR(Peak Signal to Noise Ratio) value on average 0.45 dB compared with BDMC(Bi-Directional Motion Compensation).

Configuration and Design of the Large Multi-Electromagnetic Shaking System (대형 멀티 전자기 가진 시스템의 구성 및 설계)

  • 우성현;김홍배;문상무;김영기;임종민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.618-622
    • /
    • 2004
  • The vibration test system of SITC(Satellite Integration and Test Center) at KARI(Korea Aerospace Research Institute) has been used successfully for the environmental tests of a majority of korean space programs, such as KOMPSAT, Koreasat KITSAT, STSAT and KSR program since 1996. To meet the recent needs of large size test facility available for the vibrational tests of the huge launch vehicles and tole-communication satellites which will be developed in the near future, KARI undertook to construct the large size multi-electromagnetic shaking system with 3 $\times$ 3m head expander system. The new system will consist of three electromagnetic shakers which has 160 kN thrust force individually, and be able te sustain up to 8 tons test load and 300 kNm overturing moment. And to avoid the tremendous cost and effort to furnish the seismic block with large size and weight, it will adopt a Lin-E-Air type configuration with which the seismic block is less severe than a Solid-Truninon type. In addition, to fulfill the strong requirement of high overturning moment the additional guidance system including a central bearing system on a central support and several pad bearings around the head expander body is now considered. This paper describes the configuration and the design parameters of the multi-shaking system which is under development by KARI's engineers.

  • PDF

Multi-Mode BTC Image Compression Algorithm for LCD Overdriving (LCD 오버드라이브를 위한 다중 모드 BTC 영상 압축 알고리즘)

  • Cho, Moonki;Yoon, Yungsup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.67-74
    • /
    • 2015
  • BTC (Block Truncation Coding) image compression is simple to implement by hardware and has excellent edge retention capability of image, image compression techniques are widely used in LCD overdrive. In this paper, to maintain high visual quality and has high compression rate, Multi-Mode BTC (MM-BTC) algorithm is proposed. The MM-BTC has high compression rate using advanced Y-based BTC method and has high visual quality using improved 2-level and 4-level BTC method in this paper. As shown in simulation results, MM-BTC improves still image PSNR (Peak Signal to Noise Ratio) up to 2.34 dB as compared with other algorithms. When the MM-BTC is applied to LCD overdrive, MM-BTC improves moving picture PSNR up to 2.33 dB as compared with other algorithms in literature.

In-Loop Selective Decontouring Algorithm in Video Coding (비디오 부호화 루프 내에서 의사 윤곽 오차의 선택적 제거 알고리즘)

  • Yoo, Ki-Won;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.15 no.5
    • /
    • pp.697-702
    • /
    • 2010
  • Contour artifact is known as the unintentional result of quantizing a flat area that has smooth gradients. In this letter, a decontouring algorithm is proposed to efficiently remove false contours that occur in typical block-based video coding applications. First, the algorithm goes through a refinement stage to determine candidate blocks probably having noticeable false contours with different kinds of features in a block. Then, pseudo-random noise masking is applied to those blocks to mitigate the contour artifacts. This block-based selective decontouring can efficiently remove the unnecessary processing of those blocks that have no false contour, which incidentally ensures a minor penalty in visual quality and computational complexity. The proposed algorithm was demonstrated, integrated into H.264/AVC, that visual quality can be significantly enhanced with an ignorable rate-distortion (RD) loss and an minor increase in computational complexity.

A 8192-point pipelined FFT/IFFT processor using two-step convergent block floating-point scaling technique (2단계 수렴 블록 부동점 스케일링 기법을 이용한 8192점 파이프라인 FFT/IFFT 프로세서)

  • 이승기;양대성;신경욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10C
    • /
    • pp.963-972
    • /
    • 2002
  • An 8192-point pipelined FFT/IFFT processor core is designed, which can be used in multi-carrier modulation systems such as DUf-based VDSL modem and OFDM-based DVB system. In order to improve the signal-to-quantization-noise ratio (SQNR) of FFT/IFFT results, two-step convergent block floating-point (TS_CBFP) scaling is employed. Since the proposed TS_CBFP scaling does not require additional buffer memory, it reduces memory as much as about 80% when compared with conventional CBFP methods, resulting in area-and power-efficient implementation. The SQNR of about 60-㏈ is achieved with 10-bit input, 14-bit internal data and twiddle factors, and 16-bit output. The core synthesized using 0.25-$\mu\textrm{m}$ CMOS library has about 76,300 gates, 390K bits RAM, and twiddle factor ROM of 39K bits. Simulation results show that it can safely operate up to 50-㎒ clock frequency at 2.5-V supply, resulting that a 8192-point FFT/IFFT can be computed every 164-${\mu}\textrm{s}$. It was verified by Xilinx FPGA implementation.