• Title/Summary/Keyword: Block-based Clustering

Search Result 41, Processing Time 0.025 seconds

Multiple Texture Objects Extraction with Self-organizing Optimal Gabor-filter (자기조직형 최적 가버필터에 의한 다중 텍스쳐 오브젝트 추출)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.311-320
    • /
    • 2003
  • The Optimal filter yielding optimal texture feature separation is a most effective technique for extracting the texture objects from multiple textures images. But, most optimal filter design approaches are restricted to the issue of supervised problems. No full-unsupervised method is based on the recognition of texture objects in image. We propose a novel approach that uses unsupervised learning schemes for efficient texture image analysis, and the band-pass feature of Gabor-filter is used for the optimal filter design. In our approach, the self-organizing neural network for multiple texture image identification is based on block-based clustering. The optimal frequency of Gabor-filter is turned to the optimal frequency of the distinct texture in frequency domain by analyzing the spatial frequency. In order to show the performance of the designed filters, after we have attempted to build a various texture images. The texture objects extraction is achieved by using the designed Gabor-filter. Our experimental results show that the performance of the system is very successful.

Skin Pigmentation Detection Using Projection Transformed Block Coefficient (투영 변환 블록 계수를 이용한 피부 색소 침착 검출)

  • Liu, Yang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1044-1056
    • /
    • 2013
  • This paper presents an approach for detecting and measuring human skin pigmentation. In the proposed scheme, we extract a skin area by a GMM-EM clustering based skin color model that is estimated from the statistical analysis of training images and remove tiny noises through the morphology processing. A skin area is decomposed into two components of hemoglobin and melanin by an independent component analysis (ICA) algorithm. Then, we calculate the intensities of hemoglobin and melanin by using the projection transformed block coefficient and determine the existence of skin pigmentation according to the global and local distribution of two intensities. Furthermore, we measure the area and density of the detected skin pigmentation. Experimental results verified that our scheme can both detect the skin pigmentation and measure the quantity of that and also our scheme takes less time because of the location histogram.

Correlation Distance Based Greedy Perimeter Stateless Routing Algorithm for Wireless Sensor Networks

  • Mayasala, Parthasaradhi;Krishna, S Murali
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.139-148
    • /
    • 2022
  • Research into wireless sensor networks (WSNs) is a trendy issue with a wide range of applications. With hundreds to thousands of nodes, most wireless sensor networks interact with each other through radio waves. Limited computational power, storage, battery, and transmission bandwidth are some of the obstacles in designing WSNs. Clustering and routing procedures have been proposed to address these concerns. The wireless sensor network's most complex and vital duty is routing. With the Greedy Perimeter Stateless Routing method (GPSR), an efficient and responsive routing protocol is built. In packet forwarding, the nodes' locations are taken into account while making choices. In order to send a message, the GPSR always takes the shortest route between the source and destination nodes. Weighted directed graphs may be constructed utilising four distinct distance metrics, such as Euclidean, city block, cosine, and correlation distances, in this study. NS-2 has been used for a thorough simulation. Additionally, the GPSR's performance with various distance metrics is evaluated and verified. When compared to alternative distance measures, the proposed GPSR with correlation distance performs better in terms of packet delivery ratio, throughput, routing overhead and average stability time of the cluster head.

Code Combining Cooperative Diversity in Long-haul Transmission of Cluster based Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1293-1310
    • /
    • 2011
  • A simple modification of well known Low Energy Adaptive Clustering Hierarchy (LEACH) protocol is proposed to exploit cooperative diversity. Instead of selecting a single cluster-head, we propose M cluster-heads in each cluster to obtain a diversity of order M. The cluster-heads gather data from all the sensor nodes within the cluster using same technique as LEACH. Cluster-heads transmit gathered data cooperatively towards the destination or higher order cluster-head. We propose a code combining based cooperative diversity protocol which is similar to coded cooperation that maximizes the performance of the proposed cooperative LEACH protocol. The implementation of the proposed cooperative strategy is analyzed. We develop the upper bounds on bit error rate (BER) and frame error rate (FER) for our proposal. Space time block codes (STBC) are also a suitable candidate for our proposal. In this paper, we argue that the STBC performs worse than the code combining cooperation.

Effective Artificial Neural Network Approach for Non-Binary Incidence Matrix-Based Part-Machine Grouping (비이진 연관행렬 기반의 부품-기계 그룹핑을 위한 효과적인 인공신경망 접근법)

  • Won, You-Kyung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.4
    • /
    • pp.69-87
    • /
    • 2006
  • This paper proposes an effective approach for the part-machine grouping(PMG) based on the non-binary part-machine incidence matrix in which real manufacturing factors such as the operation sequences with multiple visits to the same machine and production volumes of parts are incorporated and each entry represents actual moves due to different operation sequences. The proposed approach adopts Fuzzy ART neural network to quickly create the Initial part families and their machine cells. A new performance measure to evaluate and compare the goodness of non-binary block diagonal solution is suggested. To enhance the poor solution due to category proliferation inherent to most artificial neural networks, a supplementary procedure reassigning parts and machines is added. To show effectiveness of the proposed approach to large-size PMG problems, a psuedo-replicated clustering procedure is designed. Experimental results with intermediate to large-size data sets show effectiveness of the proposed approach.

The Application of Genetic Algorithm for the Identification of Discontinuity Sets (불연속면 군 분류를 위한 유전자알고리즘의 응용)

  • Sunwoo Choon;Jung Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.47-54
    • /
    • 2005
  • One of the standard procedures of discontinuity survey is the joint set identification from the population of field orientation data. Discontinuity set identification is fundamental to rock engineering tasks such as rock mass classification, discrete element analysis, key block analysis. and discrete fracture network modeling. Conventionally, manual method using contour plot had been widely used for this task, but this method has some short-comings such as yielding subjective identification results, manual operations, and so on. In this study, the method of discontinuity set identification using genetic algorithm was introduced, but slightly modified to handle the orientation data. Finally, based on the genetic algorithm, we developed a FORTRAN program, Genetic Algorithm based Clustering(GAC) and applied it to two different discontinuity data sets. Genetic Algorithm based Clustering(GAC) was proved to be a fast and efficient method for the discontinuity set identification task. In addition, fitness function based on variance showed more efficient performance in finding the optimal number of clusters when compared with Davis - Bouldin index.

Implementation of data synchronization for local disks in Linux high availability system (리눅스 고가용 시스템에서 로컬 디스크 간 데이터 동기화 구현)

  • Park, seong-jong;Lee, cheol-hoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.547-550
    • /
    • 2008
  • Recently, changes in the environment of user-centric internet service such as blog, UCC and IPTV and ubiquitous computing based on web service are needed to high availability system platform. High availability system is to provide safe service continuously even if system failure occurs in clustering system at the network. And it is necessary to synchronize data for reliable service in high availability system. In this paper, I implement DRBD(Disk Replicated Block Device) which is synchronization technique for data of local disks in high availability system.

  • PDF

The attacker group feature extraction framework : Authorship Clustering based on Genetic Algorithm for Malware Authorship Group Identification (공격자 그룹 특징 추출 프레임워크 : 악성코드 저자 그룹 식별을 위한 유전 알고리즘 기반 저자 클러스터링)

  • Shin, Gun-Yoon;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • Recently, the number of APT(Advanced Persistent Threats) attack using malware has been increasing, and research is underway to prevent and detect them. While it is important to detect and block attacks before they occur, it is also important to make an effective response through an accurate analysis for attack case and attack type, these respond which can be determined by analyzing the attack group of such attacks. Therefore, this paper propose a framework based on genetic algorithm for analyzing malware and understanding attacker group's features. The framework uses decompiler and disassembler to extract related code in collected malware, and analyzes information related to author through code analysis. Malware has unique characteristics that only it has, which can be said to be features that can identify the author or attacker groups of that malware. So, we select specific features only having attack group among the various features extracted from binary and source code through the authorship clustering method, and apply genetic algorithm to accurate clustering to infer specific features. Also, we find features which based on characteristics each group of malware authors has that can express each group, and create profiles to verify that the group of authors is correctly clustered. In this paper, we do experiment about author classification using genetic algorithm and finding specific features to express author characteristic. In experiment result, we identified an author classification accuracy of 86% and selected features to be used for authorship analysis among the information extracted through genetic algorithm.

Part-Machine Grouping Using Production Data-based Part-Machine Incidence Matrix: Neural Network Approach - Part 2 (생산자료기반 부품-기계 행렬을 이용한 부품-기계 그룹핑 : 인공신경망 접근법 - Part 2)

  • Won, Yu-Gyeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.656-658
    • /
    • 2006
  • This study deals with the part-machine grouping (PMG) that considers realistic manufacturing factors, such as the machine duplication, operation sequences with multiple visits to the same machine, and production volumes of parts. Basically, this study is an extension of Won(2006) that has adopted fuzzy ART neural network to group parts and machines. The proposed fuzzy ART neural network algorithm is implemented with an ancillary procedure to enhance the block diagonal solution by rearranging the order of input presentation. Computational experiments applied to large-size PMG data sets with a psuedo-replicated clustering procedure show effectiveness of the proposed approach.

  • PDF

A Z-Index based MOLAP Cube Storage Scheme (Z-인덱스 기반 MOLAP 큐브 저장 구조)

  • Kim, Myung;Lim, Yoon-Sun
    • Journal of KIISE:Databases
    • /
    • v.29 no.4
    • /
    • pp.262-273
    • /
    • 2002
  • MOLAP is a technology that accelerates multidimensional data analysis by storing data in a multidimensional array and accessing them using their position information. Depending on a mapping scheme of a multidimensional array onto disk, the sliced of MOLAP operations such as slice and dice varies significantly. [1] proposed a MOLAP cube storage scheme that divides a cube into small chunks with equal side length, compresses sparse chunks, and stores the chunks in row-major order of their chunk indexes. This type of cube storage scheme gives a fair chance to all dimensions of the input data. Here, we developed a variant of their cube storage scheme by placing chunks in a different order. Our scheme accelerates slice and dice operations by aligning chunks to physical disk block boundaries and clustering neighboring chunks. Z-indexing is used for chunk clustering. The efficiency of the proposed scheme is evaluated through experiments. We showed that the proposed scheme is efficient for 3~5 dimensional cubes that are frequently used to analyze business data.