• Title/Summary/Keyword: Block unit house

Search Result 14, Processing Time 0.024 seconds

Effect of Various β-1,3-glucan Supplements on the Performance, Blood Parameter, Small Intestinal Microflora and Immune Response in Laying Hens (β-Glucan 제제들이 산란계의 생산성, 혈액 성상과 소장내 미생물 균총 및 면역 체계에 미치는 영향)

  • Park, K.W.;Rhee, A.R.;Lee, I.Y.;Kim, M.K.;Paik, I.K.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.2
    • /
    • pp.183-190
    • /
    • 2008
  • This study was conducted to investigate the effect of feeding diets supplemented with ${\beta}-glucan$ products on the performance, small intestinal microflora and immune response in laying hens. The ${\beta}-glucan$ products used in the experiment were $BetaPolo^{(R)}$ ; soluble ${\beta}-glucan$ of microbial cell wall origin, $HiGlu^{(R)}$ ; microbial cell wall origin, $OGlu^{(R)}$ ; oat origin, $BGlu^{(R)}$ ; barley origin. A total of 720 Hy-Line Brown laying hens of 40wks old were divided into 5 dietary treatments : T1 ; Control( C), T2 ; $BetaPolo^{(R)}$, T3 ; $HiGlu^{(R)}$, T4 ; $OGlu^{(R)}$, T5 ; $BGlu^{(R)}$. Each treatment was replicated 4 times with 36 birds/replicate housed in 2 bird cages, and arranged according to completely randomized block design. Feeding trial lasted 40ds under 16 h lighting regimens. There were significant differences among treatments in hen-house egg production feed intake and feed conversion. HiGlu treatment was significantly higher than OGlu treatments in hen-house egg production. ${\beta}-glucan$ supplemented treatments were lower than the control in feed intake and feed conversion ratio. All ${\beta}-glucan$ supplemented treatments were significantly higher than the control in eggshell strength. Eggshell color and Haugh unit tended to be lower in the supplemented group than the control. IgY concentration was not significantly affected by treatments. At $5^{th}$ week of experiment, however, IgY concentration tended to increase in the supplemented groups. Among the leucocytes parameters, WBC, heterophil, lymphocytes, monocyte and eosinophil concentration were lower in the supplemented groups than those of the control. Among erythrocytes, HCT(hematocrit) and MCV(mean corpuscular volume) were significantly affected by treatment. MCV of supplemented groups were higher than that of the control. Immunoglobulin concentrations in the birds were not significantly different among treatments. However, IgA concentration tended to be low in the supplemented groups than the control. The cfu of small intestinal microflora were not significantly different among treatments, but that of Cl. perfringens tended to be lower than the control. The result of this experiment indicateted that feeding ${\beta}-glucan$ to laying hens improve feed conversion ratio and eggshell strength. Also intestinal microflora and immune responses are modified.

Effect of Dietary Supplementation of Cu-methionine Chelate and Cu-soy Proteinate on the Performance, Small Intestinal Microflora and Immune Response in Laying Hens (사료내 Cu-methionine Chelate와 Cu-soy Proteinate가 산란계의 생산성, 소장내 미생물 균총 및 면역체계에 미치는 영향)

  • Paik, I.K.;Kim, C.H.;Park, K.W.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.3
    • /
    • pp.303-311
    • /
    • 2008
  • This study was conducted to investigate the effect of dietary supplementation of Cu-methionine chelate(Cu-Met) and Cu-soy proteinate(Cu-SP) on the performance, small intestinal microflora and immune response in laying hens. A total of 960 Hy-line $Brown^{(R)}$ laying hens of 39 wks old were assigned to one of the following 6 dietary treatment: control(C), antibiotic(Avilamycine 6 ppm), Cu-Met 50 and Cu-Met 100(50 and 100 ppm Cu as Cu-methionine chelate), Cu-SP 50 and Cu-SP 100(50 and 100ppm Cu as Cu-soy proteinate). Each treatment was replicated 4 times with forty birds per replication, housed in 2 birds per cages. Forty birds units were arranged according to randomized block design. Feeding trial lasted 6 wks under 16 hours lighting regimen. Hen-day and hen-house egg production of groups treated with Antibiotic and Cu supplements tended to be higher than the control with significant difference (P<0.05) shown between Cu-Me 100 and control. Egg weight was significantly (P<0.05) heavier in antibiotic and Cu-SP treatments than Cu-Met treatments but they were not significantly different from the control. Eggshell strength, egg shell thickness, egg yolk color and Haugh unit were not significantly different among treatments. There were no significant differences in leukocytes and erythrocytes in the chicken blood. But mean corpuscular hemoglobin value(MCH) was significantly (P<0.05) higher in Cu-SP 100 than antibiotic treatment. The concentrations of serum IgG and IgA were not significantly different among treatments. Copper concentration in the liver tended to increase as the level of copper supplementation increased, that of Cu-SP 100 being significantly (P<0.05) higher than those of the control and antibiotic treatment. Concentrations of iron and zinc of the liver were not significantly influenced by treatments. Populations of Cl. perfringens and Lactobacilli in the small intestinal content were significantly (P<0.05) influenced by treatments. Population of Cl. perfringens decreased and that of Lactobacilli increased in the copper supplemented groups. The result of this experiment showed that Cu-Met and Cu-SP are comparable to antibiotic in improving egg production in laying hens. Birds fed diets supplemented with Cu-SP produced heavier eggs than those fed diets with Cu-Met. There were no significant differences in the performances between 50 ppm and 100 ppm copper supplementation as organic forms.

Effects of Supplementary Immune Modulators(MOS, Lectin) and Organic Acid Mixture(Organic acid F, Organic acid G) on the Performance, Profile of Leukocytes and Erythrocytes, Small Intestinal Microflora and Immune Response in Laying Hens (면역기능 조절제(MOS, Lectin)와 유기산제(Organic acid F, Organic acid G)가 산란계의 생산성, 혈액성상과 소장내 미생물 균총 및 면역체계에 미치는 영향)

  • Woo, K.C.;Kim, C.H.;Paik, I.K.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.481-490
    • /
    • 2007
  • An experiment was conducted to investigate the effects of dietary supplementation of MOS, lectin and organic acid mixture(Organic acid F, Organic acid G) on the egg production, egg quality, profile of leukocytes and erythrocytes, small intestinal microflora and immune response in laying hens. A total of 900 Hy-line BrownⓇ laying hens of 48 wks old were assigned to one of the following 6 dietary treatments:control(C), C+AvillamycinⓇ 6ppm, C+MOS 250ppm, C+lectin 12.5ppm, C+Organic acid F(formic acid 35.4%, formate 34.6%, potassium 30.0%) 0.3% and C+0rgarnic acid G(fumaric acid 23%, calcium formate 14%, potassium sorbate 5%, calcium propionate 7%) 0.06%. Each treatment was replicated five times with thirty birds per replicate, housed in 2 bird cages. Feeding trial lasted for 6 wks under 16 hours lighting regimen. All supplemental groups were higher than the control in 6 wks hen-day and hen-housed egg production showing the highest with MOS treatment(P<0.05). Soft & broken egg productions were lower in supplemental groups than in the control except lectin treatment(P<0.05). Eggyolk color of supplemental groups was higher than that of the control except Organic acid G treatment(P<0.05). The values of RBC, HB, MCHC were highest in lectin treatment and lowest in MOS treatment(P<0.05). The numbers of intestinal microflora were not significantly different among the treatments. Serum IgG levels of all supplemental groups were higher than those of the control(P<0.05). In conclusion, for supplementation of antibiotics, immune modulators and organic acid mixture improved production parameters in general. Among the supplements, MOS showed the best performance in egg production and eggyolk color.

Effects of Supplementary Multiple Probiotics or Single Probiotics on the Performance, Intestinal Microflora, Immune Response of Laying Hens and Broilers (혼합 또는 단일 생균제가 산란계와 육계의 생산성, 소장내 미생물 균총 및 면역 체계에 미치는 영향)

  • Kim, Chan-Ho;Woo, Kyung-Chun;Kim, Geun-Bae;Park, Yong-Ha;Paik, In-Kee
    • Korean Journal of Poultry Science
    • /
    • v.37 no.1
    • /
    • pp.51-62
    • /
    • 2010
  • This study was conducted to investigate the effects of dietary supplementation of multiple probiotics on the performance, small intestinal microflora and immune response in laying hens and broilers. In Exp.1, a total of 800, 82 wk old Hy-line Brown$^{(R)}$ laying hens were assigned to one of the following five dietary treatment; Control, Antibiotics (avilamycin 6 ppm), Probiotics; PB-M (Micro-ferm$^{(R)}$ 0.2%), PB-L (Lacto-sacc$^{(R)}$ 0.1%), PB-Y (Y University probiotics 0.2%). Each treatment was replicated eight times with 20 birds in each replicate and two birds were housed in each cage. Twenty birds units were arranged according to completely randomized block design. Feeding trial lasted 6 wk under 16 h lighting regimen. The Exp. 2, was conducted with a total of 1,000 broilers chicks (Ross$^{(R)}$). They were divided into five treatments, same as those of Exp. 1. Birds were fed starter (0~3 wk) and grower (4~5 wk) diets. Each treatment was replicated four times with 50 birds per pen comprising of deep litter. In Exp. 1, egg production parameters, such as hen-day and hen-house egg production, egg weight, broken and soft shell egg production, feed intake and feed conversion were not significantly different among treatments. However, strength and thickness of eggshell were significantly (P<0.05) different. Among the probiotics, PB-Y showed the highest strength and thickness of eggshell. Eggshell color, egg yolk color and Haugh unit were not significantly influenced. In Exp. 2, overall weight gain (0~5 wk) and mortality were not significantly different among treatments. However, weight gain of birds from PB-Y treatment during starter (0~3 wk) was significantly lower than the birds from Control and Antibiotic treatment. During the whole period (0~5 wk), birds from Antibiotics treatment had higher feed intake and Production Index (PI) and lower feed conversion than birds from Control treatment. Probiotics treatments were not significantly different from the Control on feed intake and feed conversion. In Exp.1, there were significant (P<0.05) differences in leukocytes parameters, such as white blood cell (WBC), hetrophil (HE), lymphocytes (LY), monocyte (MO), eosinophil (EO) and stress index (SI; HE/LY) in the blood of layers. Birds from Antibiotics and probiotics treatments tended to increase these parameters. In Exp. 2, however, only SI was significantly (P<0.05) decreased in Antibiotics treatments. Concentration of serum immunoglobulin (IgG) were higher (P<0.05) in PB-M and PB-Y treatments when compared with Control treatment in Exp. 1. The population of E. coli significantly (P<0.05) decreased in birds from Antibiotics, PB-L and PB-Y treatments when compared with birds from Control treatment in Exp. 1. Metalbolizability of crude fat decreased significantly (P<0.05) in birds from probiotic treatments in Exp. 2. It was concluded that the response of probiotics on the productivity of layers and broilers were different. Probiotics increased strength and thickness of eggshell in layers, and decreased feed conversion and increased PI in broilers. Leukocytes and IgG tended to increase by supplementation of antibiotics and probiotics in layers. Intestinal E. coli tended to decrease in layers. Digestibility of crude fat of diet decreased in probiotics treatments broilers. Parameters of blood and microbial were more sensitive in layers than broilers.