• Title/Summary/Keyword: Block joint

Search Result 346, Processing Time 0.034 seconds

A Study of the Ankle Joint to Mechanical Energy in Crouching Start According to the Backward Block Inclined Angle Increase (크라우칭(Crouching) 스타트 시 뒤 블록 각도 변화에 따른 발목 관절의 기계적 에너지에 대한 연구)

  • Kwon, Moon-Seok;Shin, Seong-Hyoo
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.19-28
    • /
    • 2005
  • The purpose of this study was to improve the ankle joint to mechanical energy in Crouching start according to the backward block inclined angle(F, F(+1), F(+2)) increase. For purpose of this study the ankle joint was considered as a single hinge joint rotation about a transverse axis. A two-dimensional(sagittal plane) analysis was performed on data collected from 3 spriters(university student). During Crouching start, the ankle joint moment showed a similar patterns according to the backward block inclined angle increase. The peak values of ankle joint moment was plantar flexion approximately 80% throughout the contact phase for Crouching start. The absorbed and generated energy represented different values from the backward block inclined angle increase at ankle joint. On the backward block inclined angle F, subject A($55^{\circ}$) and C($50^{\circ}$) Produced energy generation more than other block inclined angles. On the backward block inclined angle F(+2), subject B($50^{\circ}$) showed largest energy generation.

Radiofrequency Facet Joint Denervation in the Treatment of Low Back Pain: Relationship with the Diagnostic Block (요부 후지낵측지 고주파 열응고술: 진단적 차단과의 연관성)

  • Shim, Jae-Chol;Seung, Ik-Sang
    • The Korean Journal of Pain
    • /
    • v.14 no.2
    • /
    • pp.218-224
    • /
    • 2001
  • Background: Response to diagnostic blocks does not consistently predict the outcome of interventional facet denervation. We investigated the relationship between pain relief by the percutaneous radiofrequency denervation of the lumbar zygapophysial joints with the result of facet joint diagnostic local anesthetic injection in patients with back pain originating from the lumbar zygapophysial joint. Methods: There were 35 patients enrolled, with ranging in age from 25 to 76 years ($52.6{\pm}12.7$ years, mean ${\pm}$ SD). We studied 7 men (20%) and 28 women (80%). All patients underwent double diagnostic block of $L_{3/4}$, $L_{4/5}$ and $L_5-S_1$ facet joint with 0.5% bupivacaine. The 35 patients fell into the following group. (1) Group A (n = 16): those who felt clear relief (pain free with Likert scale) from the double diagnostic block (2) Group B (n = 19): 11 patients who were always equivocal in their response to the double diagnostic block and 8 patients who were either pain free or equivocal in their response to the double diagnostic block. All 11 patients were done the facet joint denervation. The effect on the pain was evaluated with 4 point Likert scale 1, 6 and 12 weeks after the procedure. We evaluated the relationship between the pain response to diagnostic block and the pain relief with facet joint denervation. Results: Significant correlation was observed between the response to diagnostic block and pain relief with facet denervation (P < 0.05). We found no correlation between the categories of spinal operation and pain response to facet denervation (P value > 0.05). Conclusions: A satisfactory result of lumbar facet joint denervation can be obtained in many patients, especillay in patients whose pain were relieved by the diagnostic double facet joint block. It may be said that facet joint denervation for mechanical low back pain using radiofrequency thermocoagulation is a safe, easy, and repeatable technique.

  • PDF

Estimation In-Situ Rockfall Block Weight Distribution Using Scan-Line Survey Results and Examination its applicability in Practical Rockfall Analysis (선조사 결과에 의한 실제낙석무게분포의 추정과 설계적용성 검토)

  • Kim, Su-Chul;Kim, Dong-Hee;Jung, Hyuk-Il;Kim, Seok-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.639-648
    • /
    • 2005
  • Up to now, practical engineers applying simplicity value of rockfall block weight suggested in design manual without considering in-situ rockfall block weight which reflect joint characteristics. However, the size of rockfall block varies with joint spacing of discontinuities and influences over rockfall analysis results. In this paper, we estimate realistic rockfall block weight distribution using statistical invariances of joint spacing derived from scan-line survey result. And, we study whether this distribution is applicable in practical rockfall analysis directly. As the results of this study, rockfall analysis results that using rockfall block weight distribution estimated from scan-line survey show resonable and realistic outcomes.

  • PDF

Block-Ordered Layered Detector for MIMO-STBC Using Joint Eigen-Beamformers and Ad-Hoc Power Discrimination Scheme

  • Lee Won-Cheol
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.275-285
    • /
    • 2006
  • Suitable for multi-input multi-output (MIMO) communications, the joint beamforming space-time block coding (JBSTBC) scheme is proposed for high-speed downlink transmission. The major functionality of the scheme entails space-time block encoder and joint transmit and receive eigen-beamformer (EBF) incorporating with block-ordered layered decoder (BOLD), and its operating principle is described in this paper. Within these functionalities, the joint EBFs will be utilized for decorrelating fading channels to cause an enhancement in the spatial diversity gain. Furthermore, to fortify the capability of layered successive interference cancellation (LSIC) in block-ordered layered decoding process, this paper will develop a simple ad-hoc transmit power discrimination scheme (TPDS) based on a particular power discrimination function (PDF). To confirm the superior behavior of the proposed JBSTBC scheme employing ad-hoc TPDS, computer simulations will be conducted under various channel conditions with the provision of detailed mathematical derivations for clarifying its functionality.

The Effects of Nerve Blocks in the Management of Occipital Neuralgia (후두신경통과 신경차단)

  • Jeong, Eui-Taeg;Choi, Hong-Cheol;Lim, So-Young;Shin, Keun-Man;Hong, Soon-Yong;Choi, Young-Ryong;Jeong, Yong-Joong
    • The Korean Journal of Pain
    • /
    • v.9 no.2
    • /
    • pp.390-394
    • /
    • 1996
  • Background: Occipital neuralgia is characterized by pain, usually deep and aching, in the distribution the second and/or third cervical dorsal root. Two broad groups of patients include primary occipital neuralgia with no apparent etiology and secondary neuralgia with structural pathology. Patients with occipital neuralgia can develop autonomic changes and hyperesthesia. In patients who have not improved with conservative treatment, we have carried out various nerve blocks and evaluated the effectiveness. Methods: In a series of 20 occipital neuralgia patients with no apparent etiolgy, we have carried out great occipital nerve blocks with needle TEAS. In patients who have not improved more than 75% on VAS with great occipital block, we have carried out C2 ganglion blocks and in patients who have not improved more than 75% with C2 ganglion block, C3 root blocks, C2/C3 facet joint blocks have been carried out in due order. Results: In 3 patients out of 10 patients who have not improved with great occipital nerve block, C2 ganglion block led to pain relief. A good response of C3 root block was achived in 2 of 7 patients without response to C2 ganglion block and C2/C3 facet joint block led to improvement in 1 of 5 patients without response to C3 root block. Conclusions: Nerve blocks like great occipital nerve block, C2 ganglion block, C3 root block, or C2/C3 facet joint block were effective in the patients who have not improved with conservative treatment.

  • PDF

Effect of Joint Persistence on the Formation of Tetrahedral Block Inside an Underground Opening (절리 영속성이 사각 단면 지하공동에서의 사면체 블록 형성에 끼치는 영향)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.475-483
    • /
    • 2016
  • A numerical analysis model capable of predicting the shape, the size and the potentiality of collapse of tetrahedral blocks considering the persistence obtained from the field survey of joint distribution around the underground excavation surface has been developed. Numerical functions of analyzing both the exposed trace distribution on the excavation surface and the formation of tetrahedral block controlled by the extent of joint surface have been established and linked to the previously developed three dimensional deterministic block analysis model. To illustrate the reliability of advanced numerical model the case of underground excavation in which the collapse of rock block had practically taken place was studied. Representative orientations of joint sets was determined based on the joint distribution pattern observed on the excavation surfaces. The formation of block on the roof of underground opening was analyzed to unveil the potential tetrahedral block the shape of which was very similar to the collapsed rock block. Mechanisms of collapse process has been also analyzed by considering the three dimensional shape of tetrahedral block.

A Case Study on Joint System Simulation Results Application to Rock Slope Design (절리계 모사결과의 암반사면설계 적용 사례)

  • Kim, Dong-Hee;Jung, Hyuk-Il;Kim, Seouk-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.669-680
    • /
    • 2005
  • It is very difficult to determine the failure block scale in great rock slopes. Especially, postulating entire slope domain as a failure block without attention to discontinuity trace lenth makes very confuse and difficult to design rock slopes. In this paper, we estimate realistic failure block scale using joint system simulation method and introduce the application procedures on rock slope analysis. Besides, presenting how joint characteristics measurement and statistical analysis results are applicated to slope stability analysis design flow.

  • PDF

A Study on the Stiffness of CBA(Corner Block with Anchor Bolt) Joint in Knockdown Type Table Furniture (조립식(組立式) 탁자(卓子)의 CBA접합부(接合部) 강성(剛性)에 관(關)한 연구(硏究))

  • Chung, Woo-Yang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.34-64
    • /
    • 1989
  • Corner block with anchor bolt(CBA) joint method used in knock-down type table furniture manufacturing can reduce the packing and transporting cost. Unfortunately. it also has the disastrous defect to be loosend and unstable during the service life mainly due to fatigue and creep(repeated and prolonged loading). So 22 joint groups constructed were tested to evaluate the effect of some design factors related to the size of side rail(apron). block attachment to side rail. and the number of anchor bolt as well as the effect of the type of corner block(mitered type vs. rectangular type) Usable strength from the stiffness coefficients of each joint group were analysed with SPSS /PC+ and described as the criteria of CBA joint construction. The conclusions were as follows: The height of side rail(50, 75 and 100 mm) and the addition of polyvinyl acetate(PVAc) emulsion in the corner block attactment to side rail had the effect on raising the usable strength of CBA joint with remarkable high significance. And the effect of 2 - anchor bolts was also superior to that of 1 - bolt significantly. However. the thickness of side rail(22 mm vs. 25 mm) had no effect on the strengthening the table joint rigidity. Mitered type corner block joint appeared to he recommendable for CBA jointed table construction rather than the rectangular type one regardless of the method of block attachment to side rail. The best result identified from Duncan's multiple comparison was in the construction with 25 mm thick and 100 mm height of side rail fastened using 2 - anchor bolts in mitered type corner block. But it would be reasonable to use 22 mm thick & 75 mm high side rail and mitered corner block with PVAc emulsion & 2 bolts considering the productivity and production cost down in the MDF furniture manufacturing industries.

  • PDF

Effect of Joint Orientation Distribution on Hydraulic Behavior of the 2-D DFN System (절리의 방향분포가 이차원 DFN 시스템의 수리적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.31-41
    • /
    • 2016
  • A program code was developed to calculate block hydraulic conductivity of the 2-D DFN(discrete fracture network) system based on equivalent pipe network, and implemented to examine the effect of joint orientation distribution on the hydraulic characteristics of fractured rock masses through numerical experiments. A rock block of size $32m{\times}32m$ was used to generate the DFN systems using two joint sets with fixed input parameters of joint frequency and gamma distributed joint size, and various normal distributed joint trend. DFN blocks of size $20m{\times}20m$ were selected from center of the $32m{\times}32m$ blocks to avoid boundary effect. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$. The directional block conductivity including the theoretical block conductivity, principal conductivity tensor and average block conductivity were estimated for generated 180 2-D DFN blocks. The effect of joint orientation distribution on block hydraulic conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the decrease of mean intersection angle of the two joint sets. The effect of variability of joint orientation on block hydraulic conductivity could not be ignored for the DFN having low intersection angle between two joint sets.

Estimation Method of Key Block Size on a Large Scale Rock Slope by Simulation of 3-D Rock Joint System (3차원 절리계 모사를 통한 대규모 암반비탈면 파괴블록크기 추정방법)

  • Kim, Dong-Hee;Jung, Hyuk-Il;Kim, Seok-Ki;Lee, Woo-Jin;Ryu, Dong-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.97-107
    • /
    • 2007
  • Accurate evaluation of the slope stability by assuming failure block as the entire slope is considered to be apposite for the small scale slope, whereas it is not the case for the large scale slope. Hence, appropriate estimation of a failure block size is required since the safety factor and the joint strength parameters are the function of the failure block size. In this paper, the size of failure block was investigated by generating 3-dimensional rock joint system based on statistical data of joints obtained from research slope, such as joint orientation, spacing and 3-dimensional joint intensity. The result indicates that 33 potential failure blocks exist in research slope, as large as 1.4 meters at least and 38.7 meters at most, and average block height is 15.2 meters. In addition, the data obtained from 3 dimensional joint system were directly applicable to the probability analysis and 2 and 3 dimensional discontinuity analysis.