• Title/Summary/Keyword: Block energy

Search Result 797, Processing Time 0.036 seconds

A Study on the Reactor Design of Solid-Solid-Gas Chemical Heat Pump System (고체-고체-기체 화학 열펌프 시스템의 반응기 설계에 관한 연구)

  • Kim, S.J.;Lee, T.H.;Neveu, P.;Choi, H.K.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.406-416
    • /
    • 1994
  • In this study the reactor design procedure and method of solid-solid-gas chemical heat pump system using STELF technology were investigated. For manufacturing IMPEX block which is the kernel of reactor, proper salt pair should be selected, and equilibrium temperature drop and COP should be examined for selected salt pair. Moreover, apparent density, residual porosity, and graphite ratio should be calculated to give minimum block volume and mass, and maximum energy density without causing heat and mass transfer problems. Since heat exchange area can be changed with operating condition, reactor diameter, length, and stainless steel thickness should be decided for desired specifications. These procedure and method were applied to the case study of 6kW cold production and 8 hours storage capacity reactor.

  • PDF

An Optimal Design of Solid Polymer Electrolyte Fuel Cell Process Using Commmercial Simulator (상용 모사기를 이용한 고체 고분자 전해질 연료전지 공정의 최적 설계)

  • 김성준;설용건;이태희
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.05a
    • /
    • pp.96-100
    • /
    • 1993
  • 상용 모사기인 ASPEN PLUS를 이용하여 메탄올을 원료로 한 고체 고분자 전해질 연료전지 발전 시스템의 정상상태 전산 모사를 실시하여 최적의 설계를 시도하였다. 연료전지 본체의 모사를 위하여 USER block과 FORTRAN block을 작성하였으며, 다른 공정은 ASPEN PLUS에서 제공되는 모델을 사용하였다. 모사 결과, 실제 경우와 근사한 값을 얻었으며, 이를 근거로 하여 조업조건에 따른 출력의 변화를 살펴봄으로써 효율을 최대로 하는 각 단위공정의 최적 조업조건을 찾아내었다. 이로부터 향후 실용화될 국내의 고체 고분자 전해질 연료전지 발전 시스템에 대한 기본 자료를 제시할 수 있으며, 개발되는 공정은 고온으로 조작되는 개질기의 열을 효율적으로 회수하여 이용함으로써 공정의 에너지 효율을 높이도록 하여야 한다.

  • PDF

Impact Behavior at Composite Material of Aluminium Double Cantilever Beam with Two Kinds of Materials (이종재료의 알루미늄 이중 외팔보 복합재의 충격 거동)

  • Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.421-426
    • /
    • 2007
  • This study was analyzed dynamically by finite element method about the results of experiments which the double cantilever beam specimens with two kinds of materials were applied by impact load. And they were compared with each other as the simulation data applied onto impact velocities of 6.4 and 18.47 m/s. The crack energy release rate, force and displacement of block were calculated numerically by computer. As the numerical simulation data of specimen analyzed in this study approached the experimental data, the inspection of this specimen model suggested in this paper could be reasonable for the numerical simulation.

  • PDF

Implementation of Energy Blockchain System (에너지 블록체인 시스템 구현)

  • Jang, Bongseog;Bae, Sang-Hyun
    • Journal of Integrative Natural Science
    • /
    • v.14 no.2
    • /
    • pp.65-72
    • /
    • 2021
  • This paper discusses on the implementation of blockchain system, specifically the private system for Energy trading purpose. Blockchain is records bundled together in blocks and added to the chain after ledger is generated. All the blocks in the entire networks should be same contents and also only the permitted nodes can join the chain in the private blockchain system, thus not that same block and permitted nodes cannot be accepted in terms of proof-of-work phase. We implement the all stages which are necessary to process blockchain system. After coding the whole process, we test and conclude that the system is correctly working in terms of the functions implemented.

Design of initial support required for excavation of underground cavern and shaft from numerical analysis

  • Oh, Joung;Moon, Taehyun;Canbulat, Ismet;Moon, Joon-Shik
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.573-581
    • /
    • 2019
  • Excavation of underground cavern and shaft was proposed for the construction of a ventilation facility in an urban area. A shaft connects the street-level air plenum to an underground cavern, which extends down approximately 46 m below the street surface. At the project site, the rock mass was relatively strong and well-defined joint sets were present. A kinematic block stability analysis was first performed to estimate the required reinforcement system. Then a 3-D discontinuum numerical analysis was conducted to evaluate the capacity of the initial support and the overall stability of the required excavation, followed by a 3-D continuum numerical analysis to complement the calculated result. This paper illustrates the application of detailed numerical analyses to the design of the required initial support system for the stability of underground hard rock mining at a relatively shallow depth.

Lifetime Extension Method for Non-Volatile Memory based Deep Learning System by analyzing Data Write Pattern (데이터 쓰기 패턴 분석을 통한 비휘발성 메모리 기반 딥러닝 시스템의 수명 연장 기법)

  • Choi, Juhee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Modern computer systems usually have special hardware for operations used in deep learning workload even edge computing environment. Non-volatile memories (NVMs) have been considered for alternative memory storage because they consume little static energy and occupy small area. However, there is a problem for NVMs to be directly adopted. An NVM cell has limited write endurance, so that the lifetime of NVM-based memory system is much shorter than that of conventional memory system. To overcome this problem for the deep learning system, this paper proposes a novel method to extend the lifetime based on the analysis of the deep learning workloads. If an incoming block has more than a predefined number of frequently used values, the cacheline is defined as write friendly block. During the victim selection, the cacheline has lower possibility to be chosen as victim. The experimental results show that the lifetime is increased by about 50% and energy consumption is decreased by 3% with a little performance hurt.

Study on the Embedded SPC System Bused on LAN

  • Yin, Jianjun;Yu, Zhonghua;Wu, Zhaotong
    • International Journal of Quality Innovation
    • /
    • v.4 no.1
    • /
    • pp.205-212
    • /
    • 2003
  • Statistical Process Control (SPC) is recognized as one of the most important tool of quality control (QC), and is one research focus in order to implement SPC quickly and effectively using computer technology and network environments. This paper proposes the principle and topology of embedded SPC based on the Internet/lntranet, emphatically discusses the embedded data sampling block, embedded network interface and SPC strategy. An example of application is given.

A Dual-Input Energy Harvesting Charger with MPPT Control (MPPT 제어 기능을 갖는 이중 입력 에너지 하베스팅 충전기)

  • Jeong, Chan-ho;Kim, Yong-seung;Jeong, Hyo-bum;Yang, Min-jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.484-487
    • /
    • 2015
  • This paper describes a dual-input battery charger with MPPT control using photovoltaic and piezoelectric energy. Each energy is harvested from photovoltaic cells and piezoelectric cells and is stored to each capacitor. The battery voltage is boosted by charger block and two energy sources are used as input to charge battery capacitor. A DC-DC boost converter is designed to boost the battery voltage, and inductor sharing technique is employed such that only one inductor is required. The time division ratio for piezoelectric cell and photovoltaic cell is set to 8:1. The proposed circuit is designed in a 0.35um CMOS process technology. The condition of battery capacitor is managed by battery management block and the battery voltage can be boosted up to 3V. The maximum efficiency of the designed entire system is 88.56%, and the chip area including pads is $1230um{\times}1330um$.

  • PDF

Si-Containing Nanostructures for Energy-Storage, Sub-10 nm Lithography, and Nonvolatile Memory Applications

  • Jeong, Yeon-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.108-109
    • /
    • 2012
  • This talk will begin with the demonstration of facile synthesis of silicon nanostructures using the magnesiothermic reduction on silica nanostructures prepared via self-assembly, which will be followed by the characterization results of their performance for energy storage. This talk will also report the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium-ion batteries. It will be presented that the porous CNT-embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium-ion batteries. Directed self-assembly (DSA) of block copolymers (BCPs) can generate uniform and periodic patterns within guiding templates, and has been one of the promising nanofabrication methodologies for resolving the resolution limit of optical lithography. BCP self-assembly processing is scalable and of low cost, and is well-suited for integration with existing semiconductor manufacturing techniques. This talk will introduce recent research results (of my research group) on the self-assembly of Si-containing block copolymers for the achievement of sub-10 nm resolution, fast pattern generation, transfer-printing capability onto nonplanar substrates, and device applications for nonvolatile memories. An extraordinarily facile nanofabrication approach that enables sub-10 nm resolutions through the synergic combination of nanotransfer printing (nTP) and DSA of block copolymers is also introduced. This simple printing method can be applied on oxides, metals, polymers, and non-planar substrates without pretreatments. This talk will also report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by the self-assembly of Si-containing BCPs. This approach offers a practical pathway to fabricate high-density resistive memory devices without using high-cost lithography and pattern-transfer processes. Finally, this talk will present a novel approach that can relieve the power consumption issue of phase-change memories by incorporating a thin $SiO_x$ layer formed by BCP self-assembly, which locally blocks the contact between a heater electrode and a phase-change material and reduces the phase-change volume. The writing current decreases by 5 times (corresponding to a power reduction of 1/20) as the occupying area fraction of $SiO_x$ nanostructures varies.

  • PDF