• 제목/요약/키워드: Blind source separation

검색결과 90건 처리시간 0.021초

재밍 환경에서 BSS 기반 측위 정확도 향상 기법 (A Scheme for Improvement of Positioning Accuracy Based on BSS in Jamming Environments)

  • 차경현;송유찬;황유민;이재생;김진영;신요안
    • 한국위성정보통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.58-63
    • /
    • 2015
  • GPS(Global Positioning System는 지구상에서 약 2km 떨어진 위성으로부터 송신한 신호를 수신하므로 그 수신감도가 매우 낮아 재밍과 간섭에 매우 취약하다. 따라서 GPS 수신단에서 항재밍 능력에 대한 필요성은 점점 증가하고 있다. 이러한 GPS의 취약성을 이용하여 전시 상황에서 적군은 재밍 기법을 이용하여 수신단에서 아군의 GPS 신호를 이용한 정확한 측위를 방해한다. 따라서 전시상황에 대비하여 재밍 환경에 대응하고, 측위 정보를 획득할 수 있는 방법이 필요하다. 본 연구에서는 재밍 환경에서의 측위 정확도를 향상시키기 위해 BSS(Blind Source Separation) 기법을 사용하여 GPS 신호와 재밍 신호를 분리하는 방법을 제안한다. 또 재밍신호와 분리된 GPS 신호에는 여전히 잡음(noise)이 존재해 정확한 측위 정보를 획득하기 어렵다. 따라서 잡음을 효과적으로 제거하기 위해 웨이블릿 임계화 기법을 사용한다. 실험 결과는 본 연구실에서 수행한 GPS/QZSS/Wi-Fi 밀결합 측위기법의 테스트 결과를 이용하여 재밍 환경에서의 BSS 와 웨이블릿 임계화 기법을 통한 정확도 향상을 보이며 제안한 시스템 모델의 우수성을 입증한다.

Constrained Spatiotemporal Independent Component Analysis and Its Application for fMRI Data Analysis

  • Rasheed, Tahir;Lee, Young-Koo;Lee, Sung-Young;Kim, Tae-Seong
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권5호
    • /
    • pp.373-380
    • /
    • 2009
  • In general, Independent component analysis (ICA) is a statistical blind source separation technique, used either in spatial or temporal domain. The spatial or temporal ICAs are designed to extract maximally independent sources in respective domains. The underlying sources for spatiotemporal data (sequence of images) can not always be guaranteed to be independent, therefore spatial ICA extracts the maximally independent spatial sources, deteriorating the temporal sources and vice versa. For such data types, spatiotemporal ICA tries to create a balance by simultaneous optimization in both the domains. However, the spatiotemporal ICA suffers the problem of source ambiguity. Recently, constrained ICA (c-ICA) has been proposed which incorporates a priori information to extract the desired source. In this study, we have extended the c-ICA for better analysis of spatiotemporal data. The proposed algorithm, i.e., constrained spatiotemporal ICA (constrained st-ICA), tries to find the desired independent sources in spatial and temporal domains with no source ambiguity. The performance of the proposed algorithm is tested against the conventional spatial and temporal ICAs using simulated data. Furthermore, its performance for the real spatiotemporal data, functional magnetic resonance images (fMRI), is compared with the SPM (conventional fMRI data analysis tool). The functional maps obtained with the proposed algorithm reveal more activity as compared to SPM.

독립 성분 분석기법과 뉴로-퍼지를 이용한 비선형 시스템 모델링 (Nonlinear System Modeling using Independent Component Analysis and Neuro-Fuzzy Method)

  • 김성수;곽근창;유정웅
    • 한국지능시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.417-422
    • /
    • 2000
  • 본 논문에서는 적응 뉴로-퍼지 모델링을 위해 최근에 BBS(blind source separation)분야에서 발전된 독립 성분 분석기법(ICA)을 전처리로 이용하여 효과적인 퍼지 규칙을 생성하는 방법을 제안한다. 기존의 뉴로-퍼지 모델링은 입력 데이터 성분간의 상관관계를 고려하지 않고 입력공간을 분할하기 때문에 효과적으로 분할하지 못하는 단점이 있다. 이로 인해 과도한 규칙 수와 큰 오차를 가지고 있었다. 이에, 본 연구에서는 독립 성분 분석기법을 이용하여 입력 데이터 성분간의 상관관계를 제거함으로서 적은 규칙 수를 갖으면서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 시뮬레이션 예로서 Box-Jenkins의 가스로 데이터의 모델링에 적용하여 유용성과 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 알 수 있었다.

  • PDF

독립성분분석 방법을 이용한 뇌-컴퓨터 접속 시스템 신호 분석 (Study of Analysis of Brain-Computer Interface System Performance using Independent Component Algorithm)

  • 송정화;이현주;조병옥;박수영;신형철;이은주;송성호
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.838-842
    • /
    • 2007
  • A brain-computer interface(BCI) system is a communication channel which transforms a subject's thought process into command signals to control various devices. These systems use electroencephalographic signals or the neuronal activity of many single neurons. The presented study deals with an efficient analysis method of neuronal signals from a BCI System using an independent component analysis(ICA) algorithm. The BCI system was implemented to generate event signals coding movement information of the subject. To apply the ICA algorithm, we obtained the perievent histograms of neuronal signals recorded from prefrontal cortex(PFC) region during target-to-goal(TG) task trials in the BCI system. The neuronal signals were then smoothed over 5ms intervals by low-pass filtering. The matrix of smoothed signals was then rearranged such that each signal was represented as a column and each bin as a row. Each column was also normalized to have a unit variance. As a result, we verified that different patterns of the neuronal signals are dependent on the target position and predefined event signals.

Estimation of the Number of Sources Based on Hypothesis Testing

  • Xiao, Manlin;Wei, Ping;Tai, Heng-Ming
    • Journal of Communications and Networks
    • /
    • 제14권5호
    • /
    • pp.481-486
    • /
    • 2012
  • Accurate and efficient estimation of the number of sources is critical for providing the parameter of targets in problems of array signal processing and blind source separation among other such problems. When conventional estimators work in unfavorable scenarios, e.g., at low signal-to-noise ratio (SNR), with a small number of snapshots, or for sources with a different strength, it is challenging to maintain good performance. In this paper, the detection limit of the minimum description length (MDL) estimator and the signal strength required for reliable detection are first discussed. Though a comparison, we analyze the reason that performances of classical estimators deteriorate completely in unfavorable scenarios. After discussing the limiting distribution of eigenvalues of the sample covariance matrix, we propose a new approach for estimating the number of sources which is based on a sequential hypothesis test. The new estimator performs better in unfavorable scenarios and is consistent in the traditional asymptotic sense. Finally, numerical evaluations indicate that the proposed estimator performs well when compared with other traditional estimators at low SNR and in the finite sample size case, especially when weak signals are superimposed on the strong signals.

Power line interference noise elimination method based on independent component analysis in wavelet domain for magnetotelluric signal

  • Cao, Xiaoling;Yan, Liangjun
    • Geosystem Engineering
    • /
    • 제21권5호
    • /
    • pp.251-261
    • /
    • 2018
  • With the urbanization in recent years, the power line interference noise in electromagnetic signal is increasing day by day, and has gradually become an unavoidable component of noises in magnetotelluric signal detection. Therefore, a kind of power line interference noise elimination method based on independent component analysis in wavelet domain for magnetotelluric signal is put forward in this paper. The method first uses wavelet decomposition to change single-channel signal into multi-channel signal, and then takes advantage of blind source separation principle of independent component analysis to eliminate power line interference noise. There is no need to choose the layer number of wavelet decomposition and the wavelet base of wavelet decomposition according to the observed signal. On the treatment effect, it is better than the previous power line interference removal method based on independent component analysis. Through the de-noising processing to actual magnetotelluric measuring data, it is shown that this method makes both the apparent resistivity curve near 50 Hz and the phase curve near 50 Hz become smoother and steadier than before processing, i.e., it effectively eliminates the power line interference noise.

고정점 알고리즘과 시간적 상관성의 적응조정 견실 알고리즘을 조합한 독립성분분석 (Hybrid ICA of Fixed-Point Algorithm and Robust Algorithm Using Adaptive Adaptation of Temporal Correlation)

  • 조용현;오정은
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.199-206
    • /
    • 2004
  • 본 논문에서는 고정점 알고리즘과 신호의 시간적 상관성을 적응 조정한 견실 알고리즘의 조합형 독립성분분석을 제안하였다. 여기서 고정점 알고리즘은 뉴우턴법의 경신규칙에 기초한 방법으로 빠른 분석속도와 우수한 분석성능을 얻기 위함이고, 견실 알고리즘은 시간적 상호 의존성이나 낮은 쿠토시스를 가지는 신호도 효과적으로 분석하기 위함이다. 특히 견실 알고리즘에서 경험적으로 설정되던 최대지연시간을 신호상호간의 자기상관함수를 이용하여 적응 조정되도록 함으로써 그 성능을 더욱 더 개선하였다. 제안된 독립성분분석을 500개 샘플을 가시는 4개의 신호와 $512\times512$ 픽셀의 10개 영상으로부터 임의의 혼합행렬에 따라 발생되는 혼합신호와 혼합영상 각각의 분리에 적용한 결과, 고정점 알고리즘의 독립성분분석 및 고정점 알고리즘과 최대시간지연을 경험적으로 설정하는 기존의 견실 알고리즘을 단순히 조합한 독립성분분석에 비해 분리속도와 분리률에서 개선된 성능이 있음을 확인하였다. 특히 문제의 규모가 증가할수록 분석성능의 개선정도도 증가함을 확인하였다.

수동 선배열 소나의 저주파 간섭 신호에 대한 독립성분분석 알고리즘 비교 (Comparison of independent component analysis algorithms for low-frequency interference of passive line array sonars)

  • 김주호;;이종현;정명준
    • 한국음향학회지
    • /
    • 제38권2호
    • /
    • pp.177-183
    • /
    • 2019
  • 본 논문에서는 수동 선배열 소나의 저주파 영역에서 수신된 표적 신호로부터 간섭신호를 분리해 내기 위해 독립성분분석 알고리즘을 적용하는 방안을 제안하고 기존 알고리즘들의 성능을 비교해 보았다. 저주파 대역 신호의 경우 비교적 넓은 방위로부터 수신되기 때문에 인접 빔 신호를 관측신호로 활용하여 독립성분분석을 수행할 수 있다. 신호분리에 사용한 독립성분분석 알고리즘은 FastICA(Fast Independent Component Analysis), NNMF (Non-negative Matrix Factorization), JADE (Joint Approximation Diagonalization of Eigen-matrices)이다. 실측 선배열 수동소나신호를 이용하여 독립성분분석을 수행한 결과 제안한 방법으로 간섭신호분리가 가능함을 확인하였으며, JADE 알고리즘의 신호 분리 성능이 가장 우수한 것으로 나타났다.

첨도를 이용한 군집성을 가진 고정점 알고리즘의 독립성분분석 (Independent Component Analysis of Fixed-Point Algorithm for Clustering Components Using Kurtosis)

  • 조용현;김아람
    • 정보처리학회논문지B
    • /
    • 제11B권3호
    • /
    • pp.381-386
    • /
    • 2004
  • 본 논문에서는 첨도가 추가된 뉴우턴법의 고정점 알고리즘에 의한 독립성분분석을 제안하였다. 여기서 첨도의 추가는 유사한 속성을 가지는 성분의 군집화된 분석순서를 얻기 위함이고, 뉴우턴법의 고정점 알고리즘은 성분의 빠른 분석과 우수한 분석성능을 얻기 위함이다. 제안된 독립성분분석을 500개 샘플을 가지는 6개의 혼합신호와 $512\times512$ 픽셀을 가지는 8개의 혼합영상의 분리에 각각 적용하여 실험한 결과, 제안된 기법은 항상 일정한 분석순서를 유지하여 기존의 기법에서 알고리즘의 수행 때마다 랜덤하게 변하는 분석순서의 제약을 해결할 수 있었다. 특히 군집화의 속성을 가진 제안된 독립성분분석은 신호나 영상의 분류나 식별에도 적용할 수 있음을 확인하였다.

RGB영상의 독립성분분석을 이용한 건고추영상 분류 (Dried pepper sorting using independent component analysis on RGB images)

  • 권기현;임정대
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권4호
    • /
    • pp.59-65
    • /
    • 2012
  • 고추는 건조과정에서 부패되거나 색이변하는 경우가 발생하므로 건고추 품질을 높이기위해서는 건고추를 선별 할 수 있는 기법이 필요하다. 독립성분분석은 블라인드소스분리에서 가장 널리 사용되는 방법으로 이 기법을 사용하여 건조시킨 고추 영상에서 가장 중요한 성분에 대한 농축영상을 얻는다. 취득한 농축영상은 일반 이진(BW) 영상과 달리 주요 성분만 반영한 것으로 영상의 주요 성분 분포 상태를 알 수 있으며 품질을 판단하여 선별하는 것이 가능하다. 또한, 추출된 농축영상의 크기는 고추의 매운 맛을 내는 주요 성분인 캡사이신류의 양과 관련성이 있음을 알 수 있다. ICA 독립성분을 기반으로 한 농축영상 추출을 통해 고추 건조과정에서 부패되어 색상이 좋지 않거나 캡사이신류과 같은 주요 성분이 없게 된 고추를 선별해하는 방법을 제안한다.