• Title/Summary/Keyword: Blending control

Search Result 173, Processing Time 0.027 seconds

Blending Surface with Parameter Control in Compound Surface (복합 곡면에서 매개변수 조정에 의한 블렌딩곡면 생성)

  • 김종열;이희관;공영식;양균의
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.148-155
    • /
    • 1998
  • For products of various shapes, compound surfaces are used. Blending surfaces are essential to the products of the compound surfaces. In this paper a method of making shape of blending surface flexible with parameter control is discussed. The parameter has quantitative control of shape of the blend. The blending surface is applied to NURBS and simple primitives in solid model. Intersection curves of surfaces is used to provide the blend with generality. Rail curve are found with the intersection curves. The blend is generated by rail curves and parameter control. Also, In strict constraint condition, blending surface with flexible shapes is discussed, keeping ;${GC}^1$ and ;${GC}^2$ continuity between free-formed surfaces and solids. Joining blending ,bridge blending and blending surface at corner are generated.

  • PDF

A Study on the Development of Brake Control Unit for Urban Transit (도시철도차량의 제동제어장치 개발에 관한 연구)

  • Lee, Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1244-1247
    • /
    • 2002
  • The blending brake is mixed brake system which is operated by electrical and mechanical brake simultaneously. Most of urban transit system is used with blending brake unit. In order to train is align at the stopping position. The blending brake shall be presicely operated to the train. Many parameters are influence on the train when train is stopped on presicion position by blending brake. It is considered such parameters as decceleration, variable load, jerk, friction cofficient, etc. Therefore, This paper consider the parameter and describes the blending control for standard EMU. The control algorithm of it is proposed and simulation of it carried out by using MATLAB. Also Electronic control unit is manufactured with micro procesor which is configured fot blending control and is verified by performance test.

  • PDF

Control of High Pretilt Angle for Nematic Liquid Crystal of Negative Dielectric Anisotropy on Blending Polymer Surfaces (복합 폴리머 표면에서의 부의 유전율을 가진 네마틱액정의 고프리틸트각 제어)

  • 황정연;서대식;남상회
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.1023-1026
    • /
    • 2001
  • The control of high pretilt angle for nematic liquid crystal (NLC) with negative dielectric anisotropy on the rubbed blending polyimide (PI) of homeotropic and homogeneous alignment surface was studied. High LC pretilt angle on the rubbing blending polyimide of homeotropic PI and SE-7492 surface was measured and the LC pretilt angle increased wish blending ratio and rubbing strength. However, the low LC pretilt angle on the rubbed blending polyimide of homeotropic PI and SE-150 surface was measured. The high pretilt angle of NLC can be achieved by using the blending PI surface.

  • PDF

Numerical Study About Flow Control Using Blending Gurney Flap with Jet Flap (Gurney플랩과 제트 플랩을 혼용한 유동제어 기법에 관한 수치적 연구)

  • Choi, Sung-Yoon;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.565-574
    • /
    • 2007
  • The flow control effect of blending Gurney flap with jet flap for flow around an NACA 0012 airfoil was numerically investigated through parameter variation of each flow control mechanism on unstructured meshes. The aerodynamic force and moment variations due to flow control were examined, and the results were compared between the blending control and each individual flow control. The results showed that the blending control required less energy input to achieve the same level of lift increment than that of the jet flap, and at the same time alleviated drag increment caused by introducing the Gurney flap.

A Study on Velocity-Brake Force Resulted from Deceleration Signal (감속도 신호에 의한 속도-제동력 고찰)

  • Lee, U-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.616-620
    • /
    • 2003
  • Brake action is important in train operation. In case of diesel motor cas, coachs and wagon, the brake system is only act on the stop of train, but it is emphasis on safety and convenience in urban transit system such as EMU, subwar, AGT, etc. Brake of EMU has two types. one is called service brake that is used at normal operation. The other is called emergency brake. it is used at emergency operation. Service brake bring a EMU to a halt through a blending brake that form electronic brake and frictional brake. Generally EMU compose motor car and trailer car. Blending brake bring a EMU to a halt through a blending brake that form electronic brake of motor car and frictional brake of trailer car. Blending braking technology have different characteristics each nations or manufacturing companies. but deceleration command that is parameter decide blending brake. According to deceleration command, electronic brake and frictional brake are applied differently So braking power is different. electronic brake and frictional brake must be used appropriately as deceleration command. Also braking facilities must be stopped EMU more economically and safely through revision of algorism about blending brake according to output diagram. Thus The purpose of paper is to propose blending braking control way as consideration of braking output diagram used deceleration command that influence blending brake of EMU.

  • PDF

The Study of Efficiency by Palmarosa, Neroli & Jasmin Essential Oil on Dry Skin Induced by Surfactant (계면활성제 유도 건성피부에 대한 Palmarosa, Neroli & Jasmin blending Oil의 유효성 비교 연구)

  • Jung, Hyun-Mee;Choi, Jeung-Sook
    • Fashion & Textile Research Journal
    • /
    • v.9 no.5
    • /
    • pp.569-572
    • /
    • 2007
  • The effectiveness of Palmarosa, Neroli and Jasmin blending oil on dry skin of rat induced by kitchen detergent are investigated. The experimental groups were divided the control group, group treated with surfactant, group treated with Palmarosa and Neroli, and group with Palmarosa, Neroli and Jasmin. Observation of epidermis and the alteration of mast cell were performed with photomicroscope. According to the epidermis morphological changes analysis, the A3 group treated with Palmarosa, Neroli and Jasmin blending oil was appeared the most similar with the control group, and the A2 group applied with Palmarosa and Neroli blending oil was sequently displayed similar characteristics. The collagen layer's breakaway resulting from Palmarosa essential oil, the collagen layer's restoration resulting from Neroli essential oil, the collagen layer's retention hyperkeratosis resulting from Jasmin essential oil were observed in the structure of the epidermal layer. In photomicrosope observation of mast cell to examine the inflammatory reactions, the increase in size and number of mast cell were showed in A1 group treated with surfactant compared to the control group. The number of mast cells definitely decreased in groups which were treated with Palmarosa, Neroli and Jasmin blending oil.

Interactive and Intuitive Physics-based Blending Surface Design for the Second Order Algebraic Implicit Surfaces

  • Park, Tae-Jung;Kam, Hyeong-Ryeol;Shin, Seung-Ho;Kim, Chang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.842-855
    • /
    • 2009
  • We present a physics-based blending method for the second order algebraic implicit surface. Unlike other traditional blending techniques, the proposed method avoids complex mathematical operations and unwanted artifacts like bulge, which have highly limited the application of the second order algebraic implicit surface as a modeling primitive in spite of lots of its excellent properties. Instead, the proposed method provides the designer with flexibility to control the shapes of the blending surface on interactive basis; the designer can check and design the shape of blending surfaces accurately by simply adjusting several physics parameter in real time, which was impossible in the traditional blending methods. In the later parts of this paper, several results are also presented.

  • PDF

Liquid Crystal Aligning Capabilities on Homeotropic Blending Polyimide Layer (수직 복합 폴리이미드층에서의 액정 배향 특성)

  • Hwang, Jeoung-Yeon;Seo, Dae-Shik;Kim, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.337-340
    • /
    • 2001
  • The control of high pretilt angle far nematic liquid crystal (NLC) with negative dielectric anisotropy on the rubbed blending polyimide (homeotropic and homogeneous alignment) surface were studied. High NLC pretilt angle generated on the blending polyimide (homeotropic polyimide and SE-7492 surface was measured and the NLC pretilt angle increases with blending ratio and rubbing strength. However, the NLC pretilt angle generated on the blending polyimide (homeotropic polyimide and SE-150 surface was not varied. The high pretilt angle the NLC using blending polyimide surface can be acheived.

  • PDF

Liquid Crystal Aligning Capabilities on Homeotropic Blending Polyimide Layer (수직 복합 폴리이미드층에서의 액정 배향 특성)

  • 황정연;서대식;김재형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.337-340
    • /
    • 2001
  • The control of high pretilt angle for nematic liquid crystal (NLC) with negative dielectric anisotropy on the rubbed blending polyimide (homeotropic and homogeneous alignment) surface were studied. High NLC pretilt angle generated on the blending polyimide (homeotropic polyimide and SE-7492 surface was measured and the NLC pretilt angle increases with blending ratio and rubbing strength. However, the NLC pretilt angle generated on the blending polyimide (homeotropic polyimide and SE-150 surface was not varied. The high pretilt angle the NLC using blending polyimide surface can be achieved.

  • PDF