• Title/Summary/Keyword: Blend ratio

Search Result 322, Processing Time 0.034 seconds

The Intumescent Flame Retardant Mechanism of Red-phosphorus Containing Ortho-Cresol Novolac / Biphenyl Epoxy Composites (적인을 포함한 Ortho-Cresol Novolac/Biphenyl 에폭시 복합재료의 발포성 난연 기구)

  • 김윤진;강신우;유제홍;김익흠;서광석
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.623-633
    • /
    • 2002
  • The flame retardant and thermal properties of ortho-cresol novolac (OCN) and biphenyl epoxy blends containing red-phosphorus were investigated. For five types of compounds designed with the volume ratio of OCN and biphenyl epoxy, thermal properties were analysed by TGA or DTC, and flame retardancy effectiveness was estimated through UL-94V test. While the flame retardant and thermal properties were improved with the content of filler and red-phosphorus, the excessive amount of red-phosphorus caused to deteriorate those properties. Using the blends of OCN/biphenyl rather than pure OCN or biphenyl epoxy as a matrix the flame retardancy of composites could be improved by the synergic effects of high thermal resistance of OCN and intumescent property of biphenyl. The flame retardant me chanism of epoxy compound containing red-phosphorus could be thought of the heat-insulating effect of intumescent char-layer formed in the surface of composites.

Fabrication and Characterization of Silk/PVA Hydrogels by Sonication and Freezing-Thawing Technique (초음파와 동결/융해에 의한 실크/PVA 하이드로젤의 제조 및 특성 평가)

  • Lee, Ok Joo;Kim, Jung-Ho;Ju, Hyung Woo;Moon, Bo Mi;Park, Hyun Jung;Sheikh, Faheem A.;Park, Chan Hum
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.717-721
    • /
    • 2013
  • Biomaterials like silk fibroin (SF) and poly(vinyl alcohol) (PVA) have received increasing attention in biomedical applications because of their attractive properties such as hydrophobicity and biocompatibility. In this study, efficient systems consisting of interpenetrating SF/PVA hydrogels were prepared as potential candidate for wound dressing applications. A simple approach consisting of sonication and a freezing-thawing technique was adopted to fabricate the hydrogels. Different blend ratios consisting of SF (100, 75, 50, 25 and 0%) with respect to the weight of PVA were prepared. The produced hydrogels were characterized for physico-chemical investigations using various states of techniques like; FE-SEM, TGA, FTIR and tensile strength. The addition of PVA to SF was proved to be beneficial in terms of reducing the pore size and swelling ratio of hydrogels. The mechanical property of SF had been increased by addition of PVA. These results show that SF/PVA hydrogels may serve as potential candidates for wound dressing application.

A Study on the Vulcanization Characteristics of SBR/BR Blends Containing Reinforcing Fillers (보강성 충전제가 첨가된 SBR/BR 블렌드의 가황특성에 관한 연구)

  • Lee, Seag
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.274-280
    • /
    • 1998
  • Order of reaction, rate constant, activation energy for vulcanization reaction, crosslinking density, and elastic constant of the network produced by sulfur curing were investigated on the SBR/BR blends containing silica and carbon black under same cure system. The reaction order was shown to be first order regardless of filler types. The carbon black filled rubber compounds showed higher rate constant compared to silica filled compounds. But activation energy appeared to be same regardless of filler type and rubber blend ratio. The crosslinking density and elastic constant is higher in the carbon black filled compound compared to silica filled compounds because of strong interaction between rubber and carbon black. On the other hand, crosslinking density and elastic constant were decreased with increasing the butadine rubber content in rubber blends. From the comparison of combined sulfur content in the vulcanized rubber, sulfur content in the silica filled compound become constant 20min later after reaction initiates but sulfur content in the carbon black filled compound become constant 10min later after reaction starts. The silica compound has a longer induction time ($t_2$) and optimum cure time($t_{90}$) compared to those of the carbon black filled compound.

  • PDF

The Antimicrobial Effects of Natural Aromas for Substitution of Parabens (합성 항균제를 대체하기 위한 천연물질의 항균 효과)

  • 조춘구;김봉남;홍세흠;한창규
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.166-185
    • /
    • 2002
  • Aroma oils extracted from the natural material have antibacterial, antivirus, antiinflammatory, and preservative effect. The preserve efficacy testing between aroma oils and parabens as an artificial preservative had been performed and then it had been suggested that aroma oil was possibile to apply to the cosmetics. Aroma oils were pine, rosemary, lemon and eucalyptus, and parabens were methylparaben, blitylparaben. Antiseptic concentrations of aroma oils and parabens having 0.0, 0.1, 0.2, 0.4, 0.8, 1.0wt% were tested respectively. Escherichia coil(ATCC No.8739), Pseudomonas aeruginosa(ATCC No. 9027) which are gram-negative and Staphylococcus aureus (ATCC No. 6538), Bacillus subtilis(ATCC No. 6633) which are gram-positive were used as the test organisms. Disk paper and broth dilution methods were used as the methods of preservative efficacy testing. The antibacterial activity of aroma oils and parabens for gram-positive were better than that for gram-negative. For the antibacterial activity aroma oils were better than parabens. Among the aroma oils, rosemary and pine having superior antibacterial activity were selected and blended to illuminate if there is any synergy, There was synergical effect and optimum ratio of aroma blend is 3 : 1(rosemary pine) in this study.

Synergistic Effects of UV Absorbance of Nanoemulsions Formed with Organic UV filters and Wax (유기자외선차단제와 왁스를 함유한 나노에멀젼의 자외선 흡광도의 상승효과)

  • Cho, Wan Goo;Cha, Young Kweon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.57-62
    • /
    • 2015
  • In this study, we investigated the effect on the increase of UV absorbance using a o/w nanoemulsion containing a blend of surfactants (Tween 80 and Span 80), an organic sunscreen, and wax. The particle size of nanoemulsion produced by PIC (Phase Inversion Composition), in Tween 80/Span 80 system containing candelilla wax was below 50 nm. As the concentration of Tween 80/Span 80/candelilla wax/organic UV filter was fixed at 4.5/0.5/3.0/2.0 wt%, and various organic sunscreens were added to the system, stable nanoemulsion was produced by Parsol MCX and Escalol 587, respectively. In addition, in the same system, when the ratio of Parsol MCX and candelilla wax was less than 2.0, a stable nanoemulsion was obtained. UV absorbance showed a high synergistic effect when Parsol MCX was used with candelilla wax.

Effect of PCE superplasticizers on rheological and strength properties of high strength self-consolidating concrete

  • Bauchkar, S.D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.561-583
    • /
    • 2018
  • A variety of polycarboxylate ether (PCE)-based superplasticizers are commercially available. Their influence on the rheological retention and slump loss in respect of concrete differ considerably. Fluidity and slump loss are the cardinal features responsible for the quality of concrete. These are related to the dispersion of cement particles and the hydration process which are greatly influenced by type of polycarboxylate ether (PCE)-based superplasticizers. On the backdrop of relatively less studies in the context of rheological retention of high strength self-consolidating concrete (HS-SCC), the experimental investigations were carried out aiming at quantifying the effect of the six different PCE polymers (PCE 1-6) on the rheological retention of HS-SCC mixes containing two types of Ordinary Portland Cements (OPC) and unwashed crushed sand as the fine aggregate. The tests that were carried out included $T_{500}$, V-Funnel, yield stress and viscosity retention tests. The supplementary cementitious materials such as fly ash (FA) and micro-silica (MS) were also used in ternary blend keeping the mix paste volume and flow of concrete constant. Low water to binder ratio was used. The results reveal that not only the PCEs of different polymer groups behave differently, but even the PCEs of same polymer groups also behave differently. The study also indicates that the HS-SCC mixes containing PCE 6 and PCE 5 performed better as compared to the mixes containing PCE 1, PCE 2, PCE 3 and PCE 4 in respect of all the rheological tests. The PCE 6 is a new class of chemical admixtures known as Polyaryl Ether (PAE) developed by BASF to provide better rheological properties in even in HS-SCC mixes at low water to binder mix. In the present study, the PCE 6, is found to help not only in reduction in the plastic viscosity and yield stress, but also provide good rheological retention over the period of 180 minutes. Further, the early compressive strength properties (one day compressive strength) highly depend on the type of PCE polymer. The side chain length of PCE polymer and the fineness of the cement considerably affect the early strength gain.

Effect of Different Dietary Composition of Linoleic Acid, Eicosapentaenoic Acid and Docosahexaenoic Acid on the Growth and Fatty Acid Profile of Olive Flounder Paralichthys olivaceus (Linoleic acid, EPA 및 DHA 조성이 다른 배합사료 공급에 따른 넙치 (Paralichthys olivaceus)의 성장 및 어체 지방산 조성)

  • Kim, Esther;Lee, Sang-Min
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.1
    • /
    • pp.49-58
    • /
    • 2019
  • This study was conducted to investigate the effects of different dietary lipid sources on the growth, feed utilization, body composition and tissue fatty acid profile of olive flounder Paralichthys olivaceus. Five isonitrogenous and isocaloric diets were formulated by adding various lipid sources including soybean oil (SO), eicosapentaenoic acid triglyceride (EPATG) and ethyl ester (EPAEE) forms, docosahexaenoic acid triglycerides (DHATG) and a 1:1 blend of soybean oil and DHATG. Triplicate groups of fish ($6.8{\pm}0.01g$) were fed one of the experimental diets to apparent satiation twice daily for 8 weeks. Fish fed the DHATG diet had the highest growth, protein efficiency ratio and feed efficiency values which were significantly higher than those fed the SO and EPAEE diets. Whole body proximate composition and somatic parameters were not influenced by the dietary treatments. Muscle of fish fed with SO diets were rich in 18:1n-9, 18:2n-6 and 18:3n-3, whereas those of fish fed with EPATG, EPAEE and DHATG diets were rich in n-3 highly unsaturated fatty acids (HUFA). These findings indicated that the inclusion of n-3HUFA oils in olive flounder feed could be beneficial for the fish while simultaneously increasing the concentration of beneficial n-3HUFA in fish fillets destined for the human consumer.

Studies on the Durable Characteristics of Self-Healing Concrete with High Water-Tightness for Artificial Ground (인공지반용 고수밀 기반 자기치유성 콘크리트의 내구특성에 관한 연구)

  • Song, Tae-Hyeob;Park, Ji-Sun;Kim, Byung-Yun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.199-206
    • /
    • 2019
  • Experimental study on the durability characteristics to examine the feasibility of concrete with high water-tightness and self-healing performance to minimize maintenance of concrete for artificial ground is as follows. 1) When blending agent, swelling agents, and curing accelerator were added on the ternary system cement with blast-furnace slag fine particles and fly ash to give a self-healing property, higher blending strengths by 82% at design standard strength of 24MPa and by 74% at design strength of 30MPa, respectively could be obtained. 2) The permeability test for the specimens having high water-tightness and no shrinkage showed that the permeability was reduced at maximum of 98%. However, the permeability was decreased as the design strength was increased, showing the reduction rate of 87% at the design strength of 50MPa. 3) The depth of carbonation of blast-furnace slag and fly ash was increased in all the specimens compared with those of OPC only. However, as the material age was increased, carbonation penetration depth was decreased compared with the reference blend. 4) Compared with the reference blending using only OPC, the freeze-thaw resistance was higher in the case of blending with 40% of blast-furnace slag and 10% of fly ash at the design standard strength of 50MPa. In addition, the freeze-thaw resistance in general was superior in the design standard strength of 50MPa with the lower water-binder ratio (W/B) as compared with the design standard strength of 24MPa and 30MPa with the high water-binder ratios.

Preparation and Characterization of Hydrophobic Coatings from Carnauba Wax/Lignin Blends

  • BANG, Junsik;KIM, Jungkyu;KIM, YunJin;OH, Jung-Kwon;YEO, wanmyeong;KWAK, Hyo Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.149-158
    • /
    • 2022
  • To realize the infinite possibilities of materials derived from wood, it is necessary to overcome the weak moisture stability of wood. Thus, the development of an eco-friendly hydrophobic coating agent is essential, and of these, woody biomass-based materials are strongly attractive as coatings. In this study, eco-friendly hydrophobic wood coatings were prepared using carnauba wax purified from palm leaves and sprouts, and kraft lignin. The physicochemical properties of the carnauba wax/lignin blends according to the ratio of carnauba wax and lignin were observed by morphology and functional group change. In addition, the coating performance of carnauba wax/lignin blend coatings was confirmed by measuring the contact angle change. It was found that the addition of lignin could accelerate the atomization of wax particles, and that micro-roughness can be realized when applied to the actual wood surface, to ensure that the coating effect over time lasts longer. In addition, it was confirmed that the addition of lignin increases the hydrogen-bond-based interaction with the wood of the coating, thereby providing better coating stability and increasing the durability of the coating solvent under friction. The carnauba wax/lignin paint developed in this way is eco-friendly because all components are made of wood-based raw materials and have an excellent affinity with wood surfaces. Therefore, it is expected to be applicable to the coating process of wood-plastic composites and timber composites.

Engineering characteristics of dune sand-fine marble waste mixtures

  • Qureshi, Mohsin U.;Mahmood, Zafar;Farooq, Qazi U.;Qureshi, Qadir B.I.L.;Al-Handasi, Hajar;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.547-557
    • /
    • 2022
  • Dune sands are poorly graded collapsible soils lacking fines. This experimental study explored the technical feasibility of sustainable invigoration of fine waste materials to improve the geotechnical properties of dune sand. The fine waste considered in this study is fine marble waste. The fine waste powder was mixed with dune sand at different contents (5, 10,15, 20, 25, 50%), where the gradation, void ratio, compaction, and shear strength characteristics were assessed for each fine marble waste -dune sand blend. The geotechnical properties of the dune sand-fine marble waste mix delineated in this study reveal the enhancement in compaction and gradation characteristics of dune sand. According to the results, the binary mixture of dune sand with 20% of fine marble waste gives the highest maximum dry density and results in shear strength improvement. In addition, a numerical study is conducted for the practical application of the binary mix in the field and tested for an isolated shallow foundation. The elemental analysis of the fine marble waste confirms that the material is non-contaminated and can be employed for engineering applications. Furthermore, the numerical study elucidated that the shallow surface replacement of the site with the dune sand mixed with 20% fine marble waste gives optimal performance in terms of stress generation and settlement behavior of an isolated footing. For a sustainable mechanical performance of the fine marble waste mixed sand, an optimum dose of 20% fine marble waste is recommended, and some correlations are proposed. Thus, for improving dune sand's geotechnical characteristics, the addition of fine marble waste to the dune sand is an environment-friendly solution.