• Title/Summary/Keyword: Blend fat

Search Result 28, Processing Time 0.019 seconds

Development and Physical Properties of Low-Trans Spread Fat from Canola and Fully Hydrogenated Soybean Oil by Lipase-Catalyzed Synthesis (카놀라유와 대두극도경화유로부터 효소적으로 합성된 저트랜스 스프레드 고체지의 특성)

  • Kim, Young-Joo;Lyu, Hyun-Kyeong;Shin, Jung-Ah;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.9
    • /
    • pp.1328-1334
    • /
    • 2010
  • Low-trans spread fat (LTSF) was produced by lipase-catalyzed synthesis of canola (CO) and fully hydrogenated soybean oil (FHSBO) at 65:35 (w/w). Blend of CO and FHSBO with 65:35 ratio was interesterified using Lipozyme TLIM (immobilized Thermomyces lanuginosus, 20% of total substrate) in a 1 L-batch type reactor at $70^{\circ}C$ with 500 rpm for 24 hr. Then, physicochemical melting properties of LTSF were compared with commercial spread fat. At $20^{\circ}C$, solid fat contents (SFC) of commercial spread fat as a control and LTSF were similar, showing 19.1 and 18.1%, respectively. Major compositional fatty acids of LTSF were C18:0, C18:1 and C18:2 (29.2, 41.8 and 13.3 wt%, respectively). Trans fatty acid content of the LTSF (0.2 wt%) was lower than that of commercial spread fat (5.5 wt%). In the RP-HPLC analysis from LTSF, major triacylglycerol (TAG) molecules were SOL (stearoyl-oleoyl-linoleyl), SOO, POS/PSP, and SOS. Also, polymorphic form and x-ray diffraction of LTSF showed coexistence of $\beta$' and $\beta$ form crystals.

Effect of Dietary Antioxidant and Energy Density on Performance and Anti-oxidative Status of Transition Cows

  • Wang, Y.M.;Wang, J.H.;Wang, C.;Wang, J.K.;Chen, B.;Liu, J.X.;Cao, H.;Guo, F.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.10
    • /
    • pp.1299-1307
    • /
    • 2010
  • This study was conducted to evaluate the effect of dietary antioxidant and energy density on performance and antioxidative status in transition cows. Forty cows were randomly allocated to 4 dietary treatments in a $2{\times}2$ factorial design. High or low energy density diets (1.43 or 1.28 Mcal $NE_L$/kg DM, respectively) were formulated with or without antioxidant (AOX, a dry granular blend of ethoxyquin and tertiary-butylhydroquinone; 0 or 5 g/cow per d). These diets were fed to cows for 21 days pre-partum. During the post-partum period, all cows were fed the same lactation diets, and AOX treatment followed as for the pre-partum period. Feeding a high energy diet depressed the DMI, milk yield, and 4% fat-corrected milk (FCM) of cows. However, AOX inclusion in the diet improved the milk and 4% FCM yields. There was an interaction of energy density by AOX on milk protein, milk fat and total solids contents. Feeding a high energy diet pre-partum increased plasma glucose and ${\beta}$-hydroxybutyrate, whereas dietary AOX decreased plasma ${\beta}$-hydroxybutyrate value during the transition period. There were also interactions between time and treatment for plasma glutathione peroxidase activity and malondialdehyde content during the study. Cows fed high energy diets pre-partum had higher plasma glutathione peroxidase activity 3 days prior to parturition, compared with those on low energy diets. Inclusion of AOX in diets decreased plasma glutathione peroxidase activity in cows 3 and 10 days pre-partum. Addition of AOX significantly decreased malondialdehyde values at calving. Energy density induced marginal changes in fatty acid composition in the erythrocyte membrane 3 days post-partum, while AOX only significantly increased cis-9, trans-11 conjugated linoleic acid composition. The increase in fluidity of the erythrocyte membrane was only observed in the high energy treatment. It is suggested that a diet containing high energy density pre-partum may negatively affect the anti-oxidative status, DMI and subsequent performance. Addition of AOX may improve the anti-oxidative status and reduce plasma ${\beta}$-hydroxybutyrate, eventually resulting in improved lactation performance; the response to AOX addition was more pronounced on the high energy diet.

Development and Characterization of Trans Free Margarine Stock from Lipase-Catalyzed Interesterification of Avocado and Palm Oils (팜유와 아보카도유로부터 효소적 interesterification을 통한 trans free margarine stock 제조 및 이화학적 특성 연구)

  • Lee, Yun-Jeung;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.231-237
    • /
    • 2009
  • Trans free margarine stock (TFMS) was produced by lipase-catalyzed synthesis of fully hydrogenated soybean oil (FHSBO), avocado oil (AO) and palm oil (PO). A blend of FHSBO, AO, and PO with a 1:5:4 (30:150:120 g, respectively) ratio was interesterified with lipozyme RM IM(from Rhizomucor miehei) in a 1 L-batch type reactor at 65 for 12 hr, and the physicochemical and melting properties of TFMS were compared with commercial margarine. The solid fat content (%) of the TFMS was analyzed at 25, 30, and $35^{\circ}C$, respectively, while its melting point was $37.8^{\circ}C$. The trans fatty acid content of the TFMS was below 0.1%. It also had acid, saponification, and iodine values of 0.4, 173.9, and 58.6, respectively. In HPLC chromatograms of the TFMS, newly synthesized peaks of triacylglycerol molecules were observed by using reverse-phase HPLC with evaporative light-scattering detection. Normal-phase HPLC with UV detection was used to quantify tocopherols in the TFMS, indicating that its ${\alpha}-$, ${\gamma}-$ and ${\delta}$-tocopherol contents were 5.7, 2.1, and 1.7 mg/100 g, respectively.

Change of Hydrolysis Rate on Hydrogenated Palm Kernel Oil and Shea Butter Blendings Using In Vitro Digestion System (In Vitro Digestion에서 팜핵경화유와 시어버터 혼합 비율에 따른 가수분해율 변화)

  • Lee, Hyeon-Hwa;Shin, Jung-Ah;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1205-1215
    • /
    • 2017
  • In this study, the hydrolysis rate of palm kernel oil (HPKO) and shea butter were compared by in vitro digestion to develop low-digestible fats. HPKO exhibited a higher hydrolysis rate than shea butter. The initial rate and ${\Phi}max$ value of HPKO were 0.315 mM/s and 78.0%, while the corresponding values for shea butter were 0.117 mM/s and 41.4%. When the two fats were blended at various ratios, the hydrolysis rate, in terms of the ${\Phi}max$ value, was similar to that of shea butter until 2:8 (HPKO : shea butter, w/w). After the analysis of triacylglycerol species and the positional fatty acid composition, the factors that affected the hydrolysis rate were determined. The results suggest that the low hydrolysis rate of shea butter would be due mostly to the stearic acid located at the sn-1,3 positions of triacylglycerol molecules. These properties of shea butter are expected to be the nutritional benefits as a low-digestible fat in foods.

Effects of Poria cocos Powder on Wet Noodle Qualities (복령분말이 생국수의 품질에 미치는 영향)

  • Kim, Young-Soo
    • Applied Biological Chemistry
    • /
    • v.41 no.7
    • /
    • pp.539-544
    • /
    • 1998
  • A study was conducted to investigate the effects of Poria cocos powder on dough rheology and wet noodle quality. Poria cocos powder had considerably lower content of crude protein, crude fat and crude ash than those of wheat flour. Poria cocos powder had also much bigger particle size $(74.62\;{\mu}m)$ and larger surface area $(3884.13\;cm^2/g)$ than those of wheat flour. The peak, final viscosities and setback in amylograph increased with the increase of Poria cocos powder concentration. The water absorption and dough stability in farinograph increased with the increase of Poria cocos powder concentration. With the increase of Poria cocos powder, the L values decreased in wheat flour-Poria cocos powder blend and dough, but increased in wet noodles. The cooked weight and volume of cooked noodles decreased, but the turbidity of soup increased with the increase of Poria cocos powder concentration. The hardness, cohesiveness, chewiness and springiness of cooked noodles had the biggest values at 3% addition of Poria cocos powder, but the values decreased above that concentration. The sensory evaluation of cooked noodles showed that the wet noodles with high quality could be produced by $5{\sim}7%$ addition of Poria cocos powder.

  • PDF

Essential oils as growth-promoting additives on performance, nutrient digestibility, cecal microbes, and serum metabolites of broiler chickens: a meta-analysis

  • Irawan, Agung;Hidayat, Cecep;Jayanegara, Anuraga;Ratriyanto, Adi
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1499-1513
    • /
    • 2021
  • Objective: The purpose of this meta-analysis was to evaluate the effect of dietary essential oils (EOs) on productive performance, nutrient digestibility, and serum metabolite profiles of broiler chickens and to compare their effectiveness as growth-promoting additives against antibiotics. Methods: Peer-reviewed articles were retrieved from Web of Science, Science Direct, PubMed, and Google scholar and selected based on pre-determined criteria. A total of 41 articles containing 55 experiments with 163 treatment units were eligible for analyses. Data were subjected to a meta-analysis based on mixed model methodology considering the doses of EOs as fixed effects and the different studies as random effects. Results: Results showed a linear increase (p<0.001) on body weight gain (BWG) where Antibiotics (FCR) and average daily feed intake decreased (p<0.001) linearly with an increasing dose of EOs. Positive effects were observed on the increased (p<0.01) digestibility of dry matter, crude protein, ether extract, and cecal Lactobacillus while Escherichia coli (E. coli) population in the cecum decreased (p<0.001) linearly. There was a quadratic effect on the weight of gizzard (p<0.01), spleen (p<0.05), bursa of fabricius (p<0.001), and liver (p<0.10) while carcass, abdominal fat, and pancreas increased (p<0.01) linearly. The dose of EOs linearly increased high density lipoprotein, glucose, protein, and globulin concentrations (p<0.01). In comparison to control and antibiotics, all type of EOs significantly reduced (p<0.001) FCR and tended to increase (p<0.1) BWG and final body weight. Cinnamaldehyde-compound was the only EOs type showing a tendency to increase (p<0.1) carcass weight, albumin, and protein of serum metabolites while this EOs together with EOs-Blend 1 decreased (p<0.01) E. coli population. Low density lipoprotein concentration decreased (p<0.05) with antibiotics and carvacrol-based compound when compared to the control group. Conclusion: This evidence confirms that EOs are suitable to be used as growth promoters and their economical benefit appears to be promising.

Development of Protein-rich Food Mixtures for Infants and Growing Children in Korea -(4) Nutritional and Biochemical Evaluation of Formulas F-P-5, F-P-6, F-P-7 and storage stability of F-P-4- (유유아(乳幼兒) 및 성장기아동을 위한 영양식품 개발에 관한 연구 -(4) F-P-5, F-P-6 및 F-P-7의 영양학적, 생화학적 검토 및 그 저장성-)

  • Kwon, Tai-Wan;Cheigh, Hong-Sik;Kim, Sook-He;Lee, Hyun-Keum
    • Journal of Nutrition and Health
    • /
    • v.3 no.3
    • /
    • pp.129-135
    • /
    • 1970
  • From the previous studies, F-P-4 formula was found to be comparable to full fat dry milk in its nutritive value and feeding performance. However, an attempt was made in order to make sure whether or not any possibility might exist, by which further improvement of nutritive quality and simultaneous reduction of product costs may be achieved. Using F-P-4 as a control, modifications were made in new formulas, F-P-5, F-P-6 and F-P-7 by reducing FPC, eliminating yeast from the mixture, and by enriching with methionine as needed. In particular, F-P-7 is completely free of FPC, hydrogenated oil and yeast. Yet, levels of total protein and fat were kept equal to those of F-P-4 in all formulas. An animal feeding test for all formulas using 10 female rats per group for 8 weeks and an infant feeding trial for F-P-5 and F-P-6 with 5 of each female infants under age of one for one month were conducted along with F-P-4 as a control. Almost the same results were obtained with F-P-4, 5 and 6, but F-P-7 showed the lowest body weight gain. FER of F-P-5 and 6 was 0.20 as was with F-P-4, while that of F-P-7 was 0.16. Acceptability to infants was excellent; growth, appearance and biochemical data were normal. As an example F-P-4 packed in 0.04mm polyethylene bags was used for storage study at $25^{\circ}C$ and relative humidity of $65{\sim}85%$ for 8 months. Although viable bacterial counts and vitamin C contents were reduced, peroxide and TBA values were increased gradually during such storage. Since there are also significant changes in color and organoleptic quality, the expected shelf life under the given conditions is considered to be about 2 months and thus further works are needed both on the product and packaging in order to improve the storage stability. Either elimination of yeast form F-P-4, that is F-P-5, or partial replacement of FPC with methionine, that is F-P-6 may well reduce material costs about 10%. Considering blending process of ingredients, F-P-5 is thus found to be the best formula developed. While F-P-7 free of FPC is inferior in its nutritive quality than that of others, but significantly superior than of rice. Furthermore, the material cost of the product can be reduced about 20% from that of F-P-4. And thus this vegetable blend is considered to be useful as a low cost supplementary food mixture for growing children.

  • PDF

Characterization of Scaled-up Low-Trans Shortening from Rice Bran Oil and High Oleic Sunflower Seed Oil with Batch Type Reactor (회분식반응기를 이용한 미강유, 팜스테아린과 고올레인산 해바라기씨유 유래 대량 제조된 저트랜스 쇼트닝의 특성 연구)

  • Kim, Ji-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.338-345
    • /
    • 2009
  • Scaled-up low-trans shortening (LTS) was produced by lipase-catalyzed interesterification. Blend of rice bran oil (RBO), palm stearin (PS) and high oleic sunflower seed oil (HO) with 1:2:0.9 (w/w/w) ratio was interesterified using immobilized lipase from Thermomyces lanuginosus (TLIM) in the batch type reactor at $65^{\circ}C$ for 24 hr, and physicochemical melting properties of LTS were compared with commercial shortening. Solid fat content (SFC) of commercial shortening (used as control) and LTS was similar at 9.56 and 8.77%, respectively, at $35^{\circ}C$. Major fatty acids in LTS were C16:1 (33.7 wt%), C18:1 (45.7 wt%) and C18:2 (13.4 wt%). Trans fatty acid content in the commercial shortening (4.8 wt%) was higher than that of LTS (0.5 wt%). After reverse-phase HPLC analysis, major triacylglycerol (TAG) species in LTS were POO, POP and PLO. Total tocopherol, ${\gamma}$-oryzanol and phytosterol contents in the LTS were 12.37, 0.43 and 251.38 mg/100 g, respectively. Hardness of LTS was similar to that of commercial shortening. Also, x-ray diffraction analysis showed coexistence of ${\beta}'$ and ${\beta}$ form in the LTS.