• Title/Summary/Keyword: Blend compound

Search Result 42, Processing Time 0.023 seconds

A Study on Surface Case Hardening of Blend Heat Treated Mild Steel (복합열처리(複合熱處理)한 연강(軟鋼)의 표면경화(表面硬化)에 관한 연구)

  • Chung, In-Sang;Chon, Hae-Dong;Sin, Soug-Mok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 1992
  • It is investigated that Fe-C-N compound layer, defusion layer, and induction hardened layer produced by nitrocarburizing blend heat treatment in austenitic temperature with high frequency induction heating of mild steel specimen sprayed sursulf salt-bath. As the temperature of blend-heat treatment got increased, the thickness and hardness of compound layer and diffusion layer were increased. Compound layer(max. $35{\mu}m$), diffusion layer (max. 2.5mm) and induction hardened layer were gained in the shortest time 10 sec and in the case of $1000^{\circ}C$ total hardness depth of those was about 3.5mm. When the blend-heat treated specimen was reheated, maximum hardness of compound layer was dropped more than that of the reheated compound layer after sursulf treated, whereas hardness of diffusion layer was increased.

  • PDF

Comparison of SBR/BR Blend Compound and ESBR Copolymer Having Same Butadiene Contents

  • Hwang, Kiwon;Lee, Jongyeop;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • The rapid development of the automobile industry is an important factor that led to the dramatic development of synthetic rubber. The tread part of tire that comes in direct contact with the road surface is related to the service life of the tire. Rubber compounds used in tire treads are often blended with SBR (styrene-butadiene rubber) and BR (butadiene rubber) to satisfy physical property requirements. However, when two or more kinds of rubber are blended, phase separation and silica dispersion problems may occur due to non-uniform mixing of the rubber. Therefore, in this study, we synthesized an SBR copolymer with the same composition as that of a typical SBR/BR blend compound by controlling butadiene content during ESBR (emulsion styrene-butadiene rubber) synthesis. Subsequently, silica filled compounds were manufactured using the synthesized ESBR, and their mechanical properties, dynamic viscoelasticity, and crosslinking density were compared with those of the SBR/BR blended compound. When the content of butadiene was increased in the silica filled compound, the cure rate accelerated due to an increased number of allylic positions, which typically exhibit higher reactivity. However, the T-2 compound with increased butadiene content by synthesis less likely to show an increase in crosslink density due to poor silica dispersion. In addition, the T-3 compound containing high cis BR content showed high crosslink density due to its monosulfide crosslinking structure. Because of the phase separation, SBR/BR blend compounds were easily broken and showed similar $M_{100%}$ and $M_{300%}$ values as those of other compounds despite their high crosslink density. However, the developed blend showed excellent abrasion resistance due to the high cis-1,4 butadiene content and low rolling resistance due to the high crosslink density.

Blending Surface with Parameter Control in Compound Surface (복합 곡면에서 매개변수 조정에 의한 블렌딩곡면 생성)

  • 김종열;이희관;공영식;양균의
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.148-155
    • /
    • 1998
  • For products of various shapes, compound surfaces are used. Blending surfaces are essential to the products of the compound surfaces. In this paper a method of making shape of blending surface flexible with parameter control is discussed. The parameter has quantitative control of shape of the blend. The blending surface is applied to NURBS and simple primitives in solid model. Intersection curves of surfaces is used to provide the blend with generality. Rail curve are found with the intersection curves. The blend is generated by rail curves and parameter control. Also, In strict constraint condition, blending surface with flexible shapes is discussed, keeping ;${GC}^1$ and ;${GC}^2$ continuity between free-formed surfaces and solids. Joining blending ,bridge blending and blending surface at corner are generated.

  • PDF

Wear Particulate Matters and Physical Properties of ENR/BR Tread Compounds with Different Ratio of Silica and Carbon Black Binary Filler Systems

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Lee, Hyun Hee;Ha, Jin Uk;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.234-242
    • /
    • 2021
  • The demand for truck bus radial (TBR) tires with enhanced fuel efficiency and wear resistance have grown in recent years. In addition, as the issue of particulate matter and air pollution increases, efforts are being made to reduce the generation of particulate matter. In this study, the properties of epoxidized natural rubber (ENR) containing a silica-friendly functional group were evaluated by considering it as a base rubber and varying the silica ratio in this binary filler system. The results showed that the wear resistance of the NR/BR blend compound decreased as the silica ratio increased. In contrast, the ENR/BR blend compound exhibited an increase in wear resistance as the silica ratio was increased. In particular, the ENR-50/BR blend compound showed the best wear resistance due to the presence of several epoxide groups. Furthermore, we observed that for tan 𝛿 at 60℃, higher epoxide content resulted in the higher Tg of the rubber, indicating a higher tan 𝛿 at 60℃. On the other hand, it was confirmed that increasing the silica ratio decreased the value of tan 𝛿 at 60℃ in all compounds. In addition, we measured the amount of wear particulate matters generated from the compound wear. These measurements confirmed that in the binary filler system, regardless of the filler type, the quantity of the generated wear particulate matters as the filler-rubber interaction increased. In conclusion, the silica filled ENR/BR blend compound exhibited the lowest generation of wear particulate matters.

Wear Particulate Matters and Physical Properties of Silica filled ENR/BR Tread Compounds according to the BR Contents

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Lee, Hyun Hee;Ha, Jin Uk;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.243-249
    • /
    • 2021
  • The demand for truck bus radial (TBR) tires with enhanced fuel efficiency and wear resistance have grown in recent years. In addition, as the issue of particulate matter and air pollution increases, efforts are being made to reduce the generation of particulate matter. In this study, we investigated the effect of varying the content of butadiene rubber (BR) on the properties of the rubber compounds and the amount of particulate matter in the TBR tire tread compound. Furthermore, we utilized carbon black in the NR/BR blend compounds owing to its excellent compatibility, and we used silica in the ENR-25/BR blend compounds because it can interact chemically with epoxide groups. The NR/BR blend compounds and the ENR-25/BR blend compounds were evaluated by varying their BR content between 20 phr and 30 phr. The results showed that the ENR-25/BR blend compounds had superior wear resistance than the NR/BR blend compounds. This was caused by the interaction between silica and ENR. In addition, it was confirmed that the increased wear resistance as the BR content increased. Furthermore, compared to the NR/BR blend compounds, ENR-25/BR blend compounds exhibited a lower tan 𝛿 value at 60℃ because silica was used as filler. This indicates a higher fuel efficiency. The measurement results for wear particulate matter showed that as increasing the BR content resulted in generation of less wear particulate matter. This was caused by the increased wear resistance. Moreover, the ENR-25/BR blend compounds with excellent filler-rubber interaction exhibited lower quantities of generated wear particulate matters as compared to the NR/BR blend compounds.

The Disperse Dyeing of Polyester/Cotton Blend Using a Hetero-bifunctional Bridge Compound (I) (이반응형 브리지 화합물을 이용한 폴리에스테르/면 복합소재의 단일분산염료염색 (I))

  • Kim Tae-Kyeong;Yoon Seok-Han;Kim Mi-Kyung
    • Textile Coloration and Finishing
    • /
    • v.18 no.3 s.88
    • /
    • pp.1-9
    • /
    • 2006
  • In order to dye polyester/cotton blend fabric by one-bath dyeing process with single disperse dye, a novel hetero-bifunctional bridge compound(DBDCBS) was synthesized and utilized. The DBDCBS was designed to contain two different reactive groups such as ${\alpha},{\beta}$-dibromopropionylamido and dichloro-s-triazinyl groups. The ${\alpha},{\beta}$-dibromopropionylamido group shows considerable reactivity towards amines or amino groups at acidic condition and high temperature. In contrast, the dichloro-s-triazinyl group has reactivity towards hydroxyl groups at alkaline condition and room temperature. In order to examine whether as a bridge the compound could combine dyes containing amino groups with cellulosic substrates, disperse dyes containing amino group were tried to dye the cotton fibers pretreated with the DBDCBS compound. By the results, polyester/cotton blends were dyed by one-bath dyeing process with single disperse dye,1,4-diaminoanthraquinone.

Characteristics of Nylon6/Ionomer Semi IPN for Molded-In-Color Compound (나일론6/이오노머 Semi IPN의 몰드-인-칼라 수지 특성 연구)

  • Lee, Ja-Hun;Hwang, Jin-Taek;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.407-412
    • /
    • 2012
  • The characteristics of nylon6/ionomer semi interpenetrating networks (IPN) as a molded-in-color (MIC) compound had been studied, and comparison was made with nylon6/ionomer blends. Nylon6/ionomer semi IPN shows better homogeneity in phase morphology than nylon6/ionomer blend, and it caused better anti-scratching performance than the blend. This semi IPN structure resulted in lowered crystallization rate, increased melt viscosity and less temperature dependency of viscosity. As a result, we may expect the enhancement of melt processing characteristics in an injection molding process using nylon6/ionomer semi IPN as a MIC compound.

Studies on the Physical Properties of Synthetic Rubber Blends Containing Rein-forcing Fillers (보강성 충전제를 함유한 합성고무 블렌드의 물리적 특성에 관한 연구)

  • Go, Jin-Hwan;Lee, Seog
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.231-237
    • /
    • 1998
  • In order to investigate the physical properties of rubber blend compound, this experiment was carried out on the cure rate, loss tangent, reinforcement and abrasion properties of S-SBR (solution styrene-butadiene rubber) blends containing silane coupled silica and E-SBR (emulsion styrene-butadiene rubber) blends containing carbon black as a model compound. E-SBR blend showed the highest total bound rubber(TBR), while S-SBR blends showed constant TBR level regardless of rubber type. Rapid cure rate was achieved when the styrene and vinyl content of rubber microstructure decreased and TBR content of rubber compounds increased. The modulus as the index of rubber reinforcement showed the linear relation with TBR content. The large amount of PICO loss was observed when the styrene and vinyl content of rubber microstructure increased, while the small amount of PICO loss was observed when the ratio of bu-tadiene increased in the S-SBR blends with silane copuled silica. The high loss tangent at $0^{\circ}C$, the low loss tangent at $60^{\circ}C$, and the large difference of loss tangent were shown in the S-SBR blends with high styrene content compared to E-SBR blend.

  • PDF

Preparation and Characterization of the Blends of Poly(vinyl alcohol) and N-(2-hydroxy)propyl-3-trimethylammonium Chitosan Chloride (폴리(비닐 알코올)과 N-(2-하이드록시)프로필-3-트리메틸 키토산 클로라이드 블렌드의 제조와 특성 분석)

  • 김영호;최재원;이은영
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.405-412
    • /
    • 2003
  • Poly(vinyl alcohol) (PVA) and N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC), a water soluble chitosan derivative synthesized by the reaction of quaternary ammonium compound with chitosan, were blended using water as a solvent and the PVA/HTCC blend films with various compositions were prepared by solution casting method. The miscibility between the two polymers and the thermal properties of the blend films were investigated using FT-IR, DSC, DMA, and TGA. Single glass transition temperatures and single melting temperatures of the blend films along with the strong and clear film state for the whole composition of blending ratios suggest the miscibility between PVA and HTCC. The PVA/HTCC blend films with HTCC content of 1% and greater showed excellent antimicrobial activity.

Optimization of Cure System for the ESBR Silica WMB and BR Silica DMB Blend Compounds

  • Yu, Eunho;Kim, Woong;Ryu, Gyeongchan;Ahn, Byungkyu;Mun, Hyunsung;Hwang, Kiwon;Kim, Donghyuk;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.97-104
    • /
    • 2019
  • Emulsion styrene-butadiene rubber silica wet masterbatch (ESBR silica WMB) technology was studied to develop highly filled and highly dispersed silica compounds, involving the preparation of a composite by co-coagulating the modified silica and the rubber latex in a liquid phase. Previous studies have shown that when manufacturing ESBR silica WMB/Butadiene silica dry masterbatch (BR silica DMB) blend compounds, preparing BR silica dry masterbatch and mixing it with ESBR silica WMB gave excellent results. However, WMB still has the problem of lower crosslink density due to residual surfactants. Therefore, in this study, tetrabenzylthiuram disulfide (TBzTD) was added instead of diphenyl guanidine (DPG) in the ESBR silica WMB/BR silica DMB blend compounds and sulfur/CBS contents were increased to evaluate their cure characteristics, crosslink densities, mechanical properties, and dynamic viscoelastic properties. TBzTD was found to be more effective in increasing the crosslink density and to produce superior properties compared to DPG. In addition, with increasing sulfur/CBS contents, mechanical properties and rolling resistance were enhanced due to high crosslink density, but the abrasion resistance was not significantly changed because of the toughness.