• Title/Summary/Keyword: Blasting work

Search Result 124, Processing Time 0.018 seconds

Development of a General Occupational Safety and Health (OSH) Guide for Maintenance Work at Electronics Industry Processing Facilities (전자산업 공정 설비 작업 안전보건가이드 개발)

  • Soyeon Kim;Seunghee Lee;Jeongyeon Park;Taek-hyeon Han;Jae-jin Moon;Ingyun Jung;Kyung Ehi Zoh;Seyoung Kwon;Kwang Jae Chung;Dong-Uk Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.18-25
    • /
    • 2024
  • Objectives: The primary aim of this study is to create an Occupational Safety and Health (OSH) guide for high-risk maintenance tasks, specifically one designed for maintenance work (MW) in the electronics industry. Methods: The methodology involved a literature review, field investigations, and discussions. An initial draft of the OSH guide was created and then refined through consultations with experts possessing extensive experience in MW for electronic processes. Results: Specific MW tasks within electronics processing facilities identified as high-risk by the research were selected. A comprehensive OSH guide for these tasks was developed consisting of approximately 11 to 12 components and encompassing about 20-25 pages. Implementing safety and health measures before, during, and after MW is crucial for the protection of maintenance personnel. The guide is enriched with real-case scenarios of industrial accidents and occupational diseases to enhance maintenance workers' comprehension of the OSH principles. For a clearer understanding of and adherence to the safety protocols, the guide incorporates visual aids, including cartoons and photographs. Conclusions: This OSH guide is designed to ensure the protection of workers involved in maintenance activities in the electronics industry. It aligns with global standards set by the International Organization for Standardization (ISO) and Semiconductor Equipment and Material International (SEMI) to ensure a high level of safety and compliance.

Prediction of Rock Mass Strength Ahead of Tunnel Face Using Hydraulic Drilling Data (천공데이터를 이용한 터널 굴진면 전방 암반강도 예측)

  • Kim, Kwang-Yeom;Kim, Sung-Kwon;Kim, Chang-Yong;Kim, Kwang-Sik
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.479-489
    • /
    • 2009
  • Appropriate investigation of ground condition near excavation face in tunnelling is an inevitable process for safe and economical construction. In this study mechanical parameters from drilling process for blasting were investigated for the purpose of predicting the ground condition, especially rock mass strength, ahead of tunnel face. Rock mass strength is one of the most important factors for classification of rock mass and making a decision of support type in underground construction. Several rock specimens which are considered homogeneous and having different strength values respectively were tested by hydraulic drill machines generally used. As a result, penetration rate is fairly related with rock mass strength among drilling parameters. It is also found that penetration rate increases along with the higher impact pressure even under same rock strength condition. It is finally suggested that new prediction method for rock mass strength using percussive pressure and penetration rate during drilling work can be utilized well in construction site.

A Study to Determine the Degree of Difficulties with the Excavation of Corestone Weathering Profiles (핵석지반에서의 굴착난이도 평가방법 연구)

  • Lee, Su-Gon;Lee, Byok-Kyu;Kim, Min-Sung
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.89-99
    • /
    • 2007
  • This paper intends to introduce more objective and qualitative rock mass classification method easily applicable to the excavation of gneissic masses showing corestone weathering profiles. It is proven that corestone weathering profile could be divided with reasonable accuracy into digging, ripping and blasting layers using visual and simple mechanical techniques such as Schmidt hammer rebound test on cut slopes, taking into consideration strength and spacial distribution of corestone, workability and work efficiency of excavation. Also, seismic refraction surveys were employed for shallow investigations (down to $20{\sim}30m$ depth) in corestone weathering profile and conducted across the top of vertical exposures where the underlying geology could be directly inspected. Some discrepancies ($3{\sim}4m$ in average and 6 m occasionally) between the actual and assumed materials with respect to seismic velocities were observed. Thus it can be concluded that field geotechnical mapping and field seismic test should be used together in order to get a relatively good accuracy in assessing likely excavation conditions of corestone weather-ing profiles.

Development of a Computer System and Suggestion of Man-Hours for Demolition Cost Estimation (해체공사비 산정을 위한 품산정 기준과 전산시스템의 개발)

  • Kim, Hyo Jin;Kang, Leen Seok;Lee, Dong Wook;Kim, Chang Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.1007-1015
    • /
    • 2014
  • The importance of construction waste reusing and recycling is becoming increasingly large because the demolition industry is in current trend to pursue for sustainable growth. As the considering situation of the domestic housing construction and existing house, a scale of demolition industry is expected to be increased continuously. But the related cost regulations that are used in tendering in the demolition industry are insufficient, also the computer system for estimating the demolition costs have not been developed yet. Therefore, in this study suggests man-hours of 21EA items which are utilized to estimate demolition cost and work rate of $1.0m^3$ breaker which is used mostly in domestic demolition industry after analyzing a case study for deconstruction works. The computer system is developed for the estimating demolition cost easily, which are including five modules such as a project information, a unit cost management, a standard unit cost table, a bill of quantity, and a reporting system. This computer system is possible to apply for estimating cost of both mechanical demolition and blasting demolition. The biggest advantage of this system is to estimate cost to utilize standard WBS which is linked with standard unit table and each DB. This can help unskilled users use easily for it.