• Title/Summary/Keyword: Blasting pressure

Search Result 151, Processing Time 0.02 seconds

Probabilistic Estimation of Fully Coupled Blasting Pressure (밀장전 발파압력의 확률론적 예측)

  • Park, Bong-Ki;Lee, In-Mo;Kim, Dong-Hyun;Lee, Sang-Don
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.391-398
    • /
    • 2004
  • The propagation mechanism of a detonation pressure with fully coupled charge is clarified and the blasting pressure propagated in rock mass is derived from the application of shock wave theory. Probabilistic distribution is obtained by using explosion tests on emulsion and rock property tests on granite in Seoul and then the probabilistic distribution of the blasting pressure is derived from their properties. The probabilistic distributions of explosive properties and rock properties show a normal distribution so that the blasting pressure propagated in rock can be also regarded as a normal distribution. Parametric analysis was performed to pinpoint the most influential parameter that affects the blasting pressure and it was found that the detonation velocity is the most sensitive parameter. Moreover, uncertainty analysis was performed to figure out the effect of each parameter uncertainty on the uncertainty of blasting pressure. Its result showed that uncertainty of natural rock properties constitutes the main portion of blasting pressure uncertainty rather than that of explosive properties.

  • PDF

Probabilistic estimation of fully coupled blasting pressure transmitted to rock mass I - Estimation of peak blasting pressure - (암반에 전달된 밀장전 발파압력의 확률론적 예측 I - 최대 발파압력 예측을 중심으로 -)

  • Park, Bong-Ki;Lee, In-Mo;Kim, Dong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.337-348
    • /
    • 2003
  • The propagation mechanism of a detonation pressure with fully coupled charge is clarified and the blasting pressure propagated in rock mass is derived from the application of shock wave theory. The blasting pressure was a function of detonation velocity, isentropic exponent, explosive density, Hugoniot parameters, and rock density. Probabilistic distribution is obtained by using explosion tests on emulsion and rock property tests on granite in Seoul and then the probabilistic distribution of the blasting pressure is derived from the above mentioned properties. The probabilistic distributions of explosive properties and rock properties show a normal distribution so that the blasting pressure propagated in rock can be also regarded as a normal distribution. Parametric analysis was performed to pinpoint the most influential parameter that affects the blasting pressure and it was found that the detonation velocity is the most sensitive parameter. Moreover, uncertainty analysis was performed to figure out the effect of each parameter uncertainty on the uncertainty of blasting pressure. Its result showed that uncertainty of natural rock properties constitutes the main portion of blasting pressure uncertainty rather than that of explosive properties. In other words, since rock property uncertainty is much larger than detonation velocity uncertainty the blasting pressure uncertainty is more influenced by the former than by the latter even though the detonation velocity is found to be the most influencing parameter on the blasting pressure.

  • PDF

Pressurized Pneumatic Grit Conveying Characteristics in Pipeline for Open Blasting Robot (오픈 블라스팅 로봇에서 관로내의 그리트 가압이송 특성)

  • Kim, Won-Bae;Yang, Seok-Won;Lee, Sang-Bum;Kim, Soo-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1185-1189
    • /
    • 2007
  • In this paper, to improve the efficiency of pressurized pneumatic grit conveying for ship block open blasting process. Pressurized pneumatic grit conveying is defined as the transportation of grit(abrasive) in a compressed air flow. Total Pressure loss in flexible hose for pneumatic conveying is sum of pressure losses due to gas and grit and needle type pressure transmitter for measured pressure loss. haracteristics of grit open blasting by pneumatic conveying were studied experimentally. Studies variables were blasting nozzle ID, length and ID of flexible hose, grit flow rate, flow rate and pressure of transport air. It was experimentally proved that optimal open blasting condition and cost effective operation regarding grit blasting, obtaining a high qulity surface preparation(Sa $2^{\frac{1}{2}}$).

  • PDF

A Study on the Blasting Dynamic Analysis using the Measurement Vibration Waveform (실측진동파형을 이용한 발파 동해석 기법에 관한 연구)

  • 최성웅;박의섭;선우춘;정소걸
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.108-120
    • /
    • 2004
  • Dynamic analysis has been increased recently to analyze the effect of the blasting vibration on the rock mass as well as the surrounding structures. The major input parameter far the general dynamic analysis, however, is merely the blasting pressure which can be obtained from the blasting pressure-time history curves. But in case of the complicate geological condition it is not simple to apply the blasting pressure on the numerical analysis because e ground vibration characteristics should be obtained considering the complexity of ground condition. Therefore the authors tried to use the blasting vibration waveform as an input data This vinylation frequency could be obtained from the test blasting in the Pasir mine, Indonesia. Through the dynamic numerical analysis on the slopes in Pasir, the current situation of this slope could be simulated precisely.

Case study on the Prediction of Underwater Sound Pressure Level by Blasting (발파에 의한 수중음압레벨 예측 사례연구)

  • Park, Jeong-Il;Kang, Choo-Won;Noh, Young-Bae;Ko, Chin-Surk
    • Explosives and Blasting
    • /
    • v.29 no.2
    • /
    • pp.81-88
    • /
    • 2011
  • Most of the blast pollution that causes complaints is noise and vibration. Hence, special attentions need to be paid to controlling the underwater noise in designing blasting for those areas. This study estimated underwater sound pressure using distance from blasting and charge per delay and underwater sound pressure level using the underwater sound pressure. To identify the validity of the estimated value, the study demonstrated the results at other areas and compared actual results with estimated results.

Propagation Characteristics of Ground Vibration Caused by Blast Hole Explosion of High Explosives in Granite (고위력 폭약의 화강암 내 장약공 폭발에 의한 지반진동 전파특성에 관한 연구)

  • Gyeong-Gyu Kim;Chan-Hwi Shin;Han-Lim Kim;Ju-Suk Yang;Sang-Ho Bae;Kyung-Jae Yun;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.29-40
    • /
    • 2023
  • Rock blasting is utilized in various fields such as mining, tunneling, and the construction of underground structures. The role of rock blasting technology has became increasingly significant with the growing utilization of underground cavity. Blast hole pressure, generated during rock blasting, is a critical variable directly impacting factors such as crushing and blast vibration. It stands out as one of the most important parameters for assessing explosive performance and predicting blasting effects. While blast hole pressure has been studied by several researches, comparisons are challenging due to variations in experimental conditions such as explosive type, charge, and blasting conditions. In this study, blast hole pressure sensors and observation hole pressure sensors were developed to measure pressure during single-hole blasting, The experimental results were then used to discuss the propagation characteristics of pressure around the blast hole and the corresponding blast vibration.

Decontamination of Simulated Test Piece by Dry Ice Pellet Blasting (드라이아이스 펠렛 분사에 의한 모의 시편의 제염)

  • Shin Jin-Myeong;Park Jang-Jin;Yang Myung-Seung
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.2
    • /
    • pp.30-36
    • /
    • 2004
  • Dry decontamination technique is required for maintaining nuclear material handling equipment contaminated with highly radioactive material in a hot cell. In order to determine the optimum blasting conditions of dry ice pellet blasting device, the basic experiments have been conducted on the simulated test specimens of four types of metals. The removal efficiency of test piece was evaluated by the XRF analysis and the change of the surface condition before and after blasting. The removal efficiency of cesium on loose contamination was 100% under blasting pressure; 3 kg/$cm^2$, blasting distance; 10 cm, blasting time: 10 sec. In case of fixed contamination, the removal efficiency of cesium was almost 96% under blasting pressure; 4kg/$cm^2$, blasting distance; 10 cm, blasting time; 30 sec.

A Numerical Study on Pressure Variation Characteristics in Blasthole by Air-Deck (에어데크 적용 시 발파공 내 압력변화 특성에 대한 수치해석)

  • Kang, Dae-Woo;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • Air deck charge blasting method which has been generally used in a surface mine and large scale developing site is one of the improved techniques with blasting effectiveness. Many studies and experiments have been tried to investigate the characteristics of pressure distribution in a blasting hole and increase the effectiveness of air deck charge blasting method. In this study, changes of pressure occurred in sections of air deck installed in various ways was computed and also changes of pressure with the location and length of air deck was analyzed, using numerical analysis program. Basically, all the numerical analysis was 2-Dimensional analysis and equation of status of explosives was JWL-EOS. Only to evaluate the variations of pressure in blast hole, it was assumed that rock mass is homogeneous but rock mass has different density and intensity.

Selection of Main Factors by Experimental Analysis for Profile Blast Machining Based on Microparticle Blasting Equipment with a Two-Axis Sequence Control Stage (2축 시퀀스 제어 스테이지와 미세입자 분사장치에 의한 형상 분사가공시 실험계획법에 의한 주요인자 검출)

  • Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.64-69
    • /
    • 2020
  • To determine the effective factors for microparticle blasting with precise sequence position control in the x-axis and y-axis directions, we conducted a statistical experimental analysis of blasted square shapes by considering five condition factors. The control input and output were operated simultaneously by rotation-linear motion conversion and fine particles were blasted onto the aluminum specimen by precise position control driving using multiple execution codes. The micro-driving device used for processing was capable of microparticle blasting and of controlling the system through contact with a limit sensor at high speed and a two-degree-of-freedom driving mechanism. Our experiments were conducted on 1,050 specimens of pure aluminum (containing <1% of other elements). The effects of several factors (e.g., particle and nozzle diameters, blasting pressure, and federate and blasting cycle numbers) on the surface roughness and blasted surface's depth were verified through a statistical experimental analysis by applying the dispersion analysis method. This statistical analysis revealed that the nozzle diameter, the blasting pressure, and the blasting cycle number were the dominant factors.

A Study on the Prediction & Transformation of Blasting Noise for Environmental Regulation Standard (발파소음의 예측기법과 환경규제 기준으로의 변환 연구)

  • 김남수;양형식
    • Explosives and Blasting
    • /
    • v.18 no.2
    • /
    • pp.14-22
    • /
    • 2000
  • The estimation of proper prediction method and the alteration of transformation method of environmental regulation standard were carried out by measuring blasting noise in construction field. The correlation of scaled distance with sound pressure level were better than with sound level, but it was proved to be difficult to control blasting noise because the correlation factor was too 1ow. three methods to transform sound pressure levee to sound level were examined. The method is the transformation by correlation equation of sound pressure level and sound level which are measured at the same time, and simplified transformation of A-weighting network corresponding to dominant frequency, and the transformation of sound pressure level by FFT. There were many errors to transform. The best effective method is the transformation using correlation equation of sound pressure level and sound level which are measured at the same time.

  • PDF