• Title/Summary/Keyword: Blasting demolition method

Search Result 37, Processing Time 0.018 seconds

Application of Advanced Blast Demolition Simulation Method to the Drill and Blast Design for Demolishing Cylindrical Structures (원통형 구조물의 발파해체설계에 대한 최신 발파해체 시뮬레이션 기법의 적용)

  • Park, Hoon;Suk, Chul-Gi;Kim, Seung-Kon
    • Explosives and Blasting
    • /
    • v.26 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • In order to complete successfully the demolition of a silo structure by means of felling method, structural properties and the geometric design of blast mouth have to be considered. In this study, a commercial software, 3-dimensional applied element analysis (3D AEM), was used to investigate the effect of the geometrical parameters of blast mouth on the collapse behavior of the silo structure.

A Case Study on Explosive Demolition of a Steel-Frame Structure (철골구조물 발파해체 시공사례)

  • Park, Hoon;Noh, You-Song;Nam, Sung-Woo;Jang, Seong-Ok;Kim, Nae-Hoi;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.39 no.2
    • /
    • pp.27-36
    • /
    • 2021
  • Recently, the demand for demolition for the unnecessary steel frame structure is increasing due to deterioration and unsatisfactory functional conditions and the major highlights of demolition issues. This execution case was intended to describe an application of the felling method as one about the suggested method for explosive demolition method of ore bin and coke bin facilities, which were steel frame structures. And we used the charging container for blast cutting of the steel frame structure. As a result of the explosive demolition, the ore bin and coke bin had collapsed precisely according to the estimated direction. And the explosive demolition was completed without causing any damage to surrounding facilities.

Simulation of Blasting Demolition Using Three-Dimensional Bonded Particle Model (삼차원 입자결합모델을 이용한 구조물 해체발파 모사 연구)

  • Shin Byung-Hun;Jeon Seok-Won
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.65-77
    • /
    • 2005
  • Reflecting the fact that there are increasing number of old high-story apartment structures in urban area, it is expected that the demand of blasting demolition will increase in the near future. It is of great important to make up for the insufficient empirical knowledge in blasting demolition through priori method such as computer simulation. Computer simulation of the blasting demolition involves complicated process. In the past domestic researches, two-dimensional bonded particle model was used to examine the overall demolition behavior of a five-story simple structure. It was observed that the two-dimensional simulation did not properly simulate the collapsing behavior of a structure mainly due to the reduced degree of freedom. In this study, three-dimensional simulation was tried. It consumed a great amount of calculation time, which limited the extent of the study. A few parameters, such as delay times, amount of charge at each hole, ball properties, were modified in order to check oui; their effect on the collapsing behavior. The differences were observed as expected but the collapsing behavior did not exactly coincide with the test blasting with a scaled model.

Numerical Analysis of Collapse Behavior in Industrial Stack Explosive Demolition (산업용 연돌 발파해체에서 붕괴거동에 관한 수치해석적 연구)

  • Pu-Reun Jeon;Gyeong-Jo Min;Daisuke Fukuda;Hoon Park;Chul-Gi Suk;Tae-Hyeob Song;Kyong-Pil Jang;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.62-72
    • /
    • 2023
  • The aging of plant structures due to industrialization in the 1970s has increased the demand for blast demolition. While blasting can reduce exposure to environmental pollution by shortening the demolition period, improper blasting design and construction plans pose significant safety risks. Thus, it is vital to consider optimal blasting demolition conditions and other factors through collapse behavior simulation. This study utilizes a 3-D combined finite-discrete element method (FDEM) code-based 3-D DFPA to simulate the collapse of a chimney structure in a thermal power plant in Seocheon, South Korea. The collapse behavior from the numerical simulation is compared to the actual structure collapse, and the numerical simulation result presents good agreement with the actual building demolition. Additionally, various numerical simulations have been conducted on the chimney models to analyze the impact of the duct size in the pre-weakening area. The no-duct, duct, and double-area duct models were compared in terms of crack pattern and history of Z-axis displacement. The findings show that the elapse-time for demolition decreases as the area of the duct increases, causing collapse to occur quickly by increasing the load-bearing area.

A Case Study on Explosive Demolition of Cylindrical Silo (원통형 사일로 발파해체 시공사례)

  • Park, Hoon;Jang, Seong-Ok;Park, Hyong-Ki;Kim, Nae-Hoi;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.52-63
    • /
    • 2008
  • Recently the demand of demolition for the unnecessary cylindrical silo structure is increasing due to deterioration and unsatisfactory functional conditions and the issue of demolition is becoming a major highlight. This case study introduced the explosive demolition of the cylindrical silo structure by felling method. The results of explosive demolition conducted on cylindrical silo structure using the felling method show, A silo had collapsed precisely according to estimated direction but in case of B silo there was a minor difference. The lower colunms and ring girder support was designed to the hinge line but in reality the lower colunms of the silo did not do its structural support role and only the ring girder support did its role successfully. As for the impact vibration, most of the measurements were within the estimated range.

A Case Study on Explosive Demolition of a Large Section Turbine Foundation Structure (대단면 터빈기초 구조물의 발파해체 시공사례)

  • Park, Hoon;Nam, Sung-Woo;Noh, You-Song;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.54-65
    • /
    • 2022
  • Recently, the demand for the dismantling of large-scale industrial structures is increasing, and the construction of restoring the dismantled industrial to their original natural environment is underway. This case was an application of the explosive demolition method to the demolition of a large section turbine foundation structure which structural obsolescence and failure to meet functional requirements. As a result of the explosive demolition, the fracture condition of the turbine foundation was satisfactory, and the explosive demolition was completed without causing any damage to the surrounding facilities.

Explosive Demolition of Special Structure of Soongeui Complex Stadium (숭의종합운동장 특수구조물 발파해체)

  • Suk, Chul-Gi;Park, Hoon;Kim, Nae-Hoi;Song, Young-Suk;Jung, Woo-Jin;Han, Dong-Hun
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.108-118
    • /
    • 2010
  • Soongeui complex stadium is a reinforced concrete frame structure composed of columns, slabs and beams. The stadium, however, is also a special structure because it has a tall tower of electronic display board and slabs inside its own structure which is different from the structures that had been demolished using blasting by then. Explosive demolition for the stadium was carried out from the left-hand side of the outfield stand to the right considering 2 rows of columns supporting the stand as a blasting unit. An overturning demolition method was applied to the tower of electronic display board. Water bags that played the role of multipurpose protection were applied to control the dust. As a result, the demolition project of the special structure of Soongeui complex stadium was judged to be a great success.