• Title/Summary/Keyword: Blast-vibration

Search Result 237, Processing Time 0.025 seconds

A Case Study on the Blasting Analysis of Slope Using Monitored Vibration Waveform (실측진동파형을 이용한 비탈면 발파진동 해석 사례)

  • Park, Do-Hyun;Cho, Young-Gon;Jeon, Seok-Won
    • Explosives and Blasting
    • /
    • v.24 no.2
    • /
    • pp.41-50
    • /
    • 2006
  • Excavation by explosives blasting necessarily involves noise and vibration, which is highly prone to face claims on the environmental and structural aspects from the neighbors. When the blasting carried out in the vicinity of a structure, the effect of blasting vibration on the stability of the structure should be carefully evaluated. In the conventional method of evaluation, an equation for blast vibration is obtained from test blasting which is later used to determine the amount of charge. This method, however, has limitations in use since it does not consider topography and change in ground conditions. In order to overcome the limitations, dynamic numerical analysis is recently used in continuum or discontinuous models, where the topography and the ground conditions can be exactly implemented. In the numerical analysis for tunnels and rock slopes, it is very uncommon to simulate multi-hole blasting. A single-hole blasting pressure is estimated and the equivalent overall pressure at the excavation face is used. This approach based on an ideal case usually does not consider the ground conditions. And this consequently results in errors in calculation. In this presentation of a case study, a new approach of using blast waves obtained in the test blast is proposed. The approach was carried out in order to improve the accuracy in calculating blasting pressure. The stability of a structure in the vicinity of a slope blasting was examined using the newly proposed method.

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works. (S화력발전소 3, 4호기 증설에 따르는 정밀발파작업으로 인한 인접가동발전기및 구조물에 미치는 파동영향조사)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.8 no.1
    • /
    • pp.3-16
    • /
    • 1990
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill $\varphi{70mm}$ on the calcalious sand stone(sort-moderate-semi hard Rock). The total numbers of feet blast were 88. Scale distance were induces 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagtion Law in Blasting Vibration $V=K(\frac{D}{W^b})^n$ where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites (m) W : Maximum Charge per delay-period of eighit milliseconds or more(Kg) K : Ground transmission constant, empirically determind on th Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity $D/W^b$ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three graups. Cabic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge per delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over loom distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30m----under l00m----- $V=41(D/3\sqrt{W})^{-1.41}$ -----A Over l00m-----$V= 121(D/3\sqrt{W})^{-1.66}$-----B K value on the above equation has to be more specified for furthur understang about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works (삼천포화력발전소 3, 4호기 증설에 따르는 정밀발파작업으로 인한 인접가동발전기 및 구조물에 미치는 진동영향조사)

  • Huh, Ginn
    • Journal of the Korean Professional Engineers Association
    • /
    • v.24 no.6
    • /
    • pp.97-105
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill ø70mm on the calcalious sand stone (soft-moderate-semi hard Rock). The total numbers of fire blast were 88 round. Scale distance were induces 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagation Law in Blasting Vibration (Equation omitted) where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W : Maximum Charge per delay-period of eighit milliseconds o. more(kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity D / W$^n$ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three graups. Cubic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge per delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over 100m distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30 ‥‥‥under 100m ‥‥‥V=41(D/$^3$√W)$\^$-1.41/ ‥‥‥A Over 100 ‥‥‥‥under 100m ‥‥‥V=121(D/$^3$√W)$\^$-1.56/ ‥‥‥B K value on the above equation has to be more specified for furthur understang about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works. (S 화력발전소 3, 4호기 증설에 따르는 정밀발파작업으로 인한 인접가동발전기 및 구조물에 미치는 진동영향조사)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.9 no.4
    • /
    • pp.3-12
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M /S delay caps. Drill depth was from 3m to 6m with Crawler Drill 70mm on the calcalious sand stone (soft-moderate-semi hard Rock) . The total numbers of feet blast were 88. Scale distance were induces 15.52-60.32. It was applied to Propagation Law in blasting vibration as follows .Propagtion Law in Blasting Vibration V=k(D/W/sup b/)/sup n/ where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W ; Maximum Charge per delay -period of eight milliseconds or more(Kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity D/W/sup b/ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three groups. Cabic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over loom distance because the frequency is varified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30m--under 100m----V=41(D/ W)/sup -1.41/-----A Over l00m---------V=121(D/ W)/sup -1.56/-----B K value on the above equation has to be more specified for furthur understand about the effect of explosives. Rock strength, And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

Control Effect of Vibration According to the Application Ratio of Electronic Detonator for Tunnel Blasting (터널발파시 전자뇌관 적용 비율에 따른 진동저감 효과 연구)

  • JongWoo Lee;TaeHyun Hwang;NamSoo Kim;KangIl Lee
    • Explosives and Blasting
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Through existing research and construction cases during tunnel blasting, the electronic blasting method is reported to be more effective in reducing blast vibration than the normal blasting method. However, due to the high price of electronic detonators, they are only used in some blasting sites where security objects are located nearby. Accordingly, this study performed tunnel blasting tests by adjusting the ratio of electronic and non-electronic detonators. And through the research results, the reduction effect of blasting vibration according to the detonator ratio was evaluated. The research results showed that the reduction effect of blast vibration was greatest when 100% electronic detonator was applied. In addition, when more than 52% of the electronic detonator was applied, it was found that the reduction effect was similar to the reduction effect when 100% of the detonator was used.

The Development and Application of Low Vibration Explosives(NewFINECKER) (미진동 화약(NewFINECKER) 개발 및 현장 적용에 관한 연구)

  • Park, Yun-Seok;Jeong, Min-Su
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • This study improved construction and cost efficiency that are disadvantages of existing low vibration crackers(low vibration cracker, plasma, etc) and introduced cases of development and practical applications of Low vibration explosives(NewFINECKER) that minimizes blast vibration. The low vibration explosives(NewFINECKER) is suitable to Type-1 among standard blasting patterns of Ministry of Land, Transport and Maritime Affairs(MLTM) and delay blasting is possible. Moreover, the low vibration explosives improve construction and work efficiency while the level of vibration is shown to be about 60~70% of normal emulsion explosives. Additionally, this study suggested standard blasting patterns, the prediction equation of blasting vibration, and construction methods.

SOftware for Noise Information - SONICS (건설공사장, 도로교통 및 철도소음 예측 프로그램 - SONICS)

  • 김정태;이규철;박지헌
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.747-752
    • /
    • 1998
  • SONICS is the software developed by authors. The program provides the noise level in outdoors due to various noise source types : construction machines including blast sources, railroad vehicles and automobiles. h operates in the Windows system. Since the software is compiled by using Visual C++ 4.0, users can run the program interactively. Also SONICS uses Windows' dialog-box and choice-button so that a novice user can easily implement the program for the environmental noise planning.

  • PDF

Active Aeroelastic Response Control of 3-D Airfoil System with Flap (플랩이 있는 날개의 공탄성 응답 능동제어)

  • 정찬훈;나성수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.926-931
    • /
    • 2003
  • 본 연구는 비압축성 유동에 노출되어 있는 2-D wing-flap 시스템의 공탄성 응답의 능동제어를 다루고 있다. 본 연구 논문의 목표는 LQG 제어법칙을 수행함으로써 임계 비행속도하에서 플러터의 비안정성을 억제하고 돌풍이나 blast load에 의한 임계 공탄성 응답의 성능을 향상시키는 것과 동적응답을 감쇠하는 수행능력들을 증명하는데 있다.

  • PDF