• 제목/요약/키워드: Blast test

검색결과 720건 처리시간 0.028초

복합 재료 폭파 방화벽 실험 연구 (Study on the Composite Blast Wall Test)

  • 양현정;강영종
    • 복합신소재구조학회 논문집
    • /
    • 제1권4호
    • /
    • pp.6-12
    • /
    • 2010
  • This study investigates how to apply composite material to the blast loading protection devices, mainly used for military purpose. Traditionally, earth-filled blast walls have been used for protecting important parts of military facilities and personnels. However these types of blast walls show difficulty in fabrication and portability because of their nature of heavy weight. Composite materials are known to have relatively higher specific stiffness and strength than any other metallic and earth-filled materials such as sand and gravels. Totally 4 times of TNT blast experiments were performed on the carbon/epoxy blast walls. After the end of each test, the improvement of blast wall was implemented to the structure. The test results show that the use of composite material in the blast protecting area is the one of very effective and reliable alternatives.

  • PDF

Impact of a shock wave on a structure strengthened by rigid polyurethane foam

  • Mazek, Sherif A.;Mostafa, Ashraf A.
    • Structural Engineering and Mechanics
    • /
    • 제48권4호
    • /
    • pp.569-585
    • /
    • 2013
  • The use of the rigid polyurethane foam (RPF) to strengthen sandwich structures against blast terror has great interests from engineering experts in structural retrofitting. The aim of this study is to use the RPF to strengthen sandwich steel structure under blast load. The sandwich steel structure is assembled to study the RPF as structural retrofitting. The filed blast test is conducted. The finite element analysis (FEA) is also used to model the sandwich steel structure under shock wave. The sandwich steel structure performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the field blast test and the numerical model. The RPF improves the sandwich steel structure performance under the blast wave propagation.

Impact of composite materials on performance of reinforced concrete panels

  • Mazek, Sherif A.;Mostafa, Ashraf A.
    • Computers and Concrete
    • /
    • 제14권6호
    • /
    • pp.767-783
    • /
    • 2014
  • The use of composite materials to strengthen reinforced concrete (RC) structures against blast terror has great interests from engineering experts in structural retrofitting. The composite materials used in this study are rigid polyurethane foam (RPF) and aluminum foam (ALF). The aim of this study is to use the RPF and the ALF to strengthen the RC panels under blast load. The RC panel is considered to study the RPF and the ALF as structural retrofitting. Field blast test is conducted. The finite element analysis (FEA) is also used to model the RC panel under shock wave. The RC panel performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the field blast test and the proposed numerical model. The composite materials improve the RC panel performance under the blast wave propagation.

Performance of sandwich structure strengthened by pyramid cover under blast effect

  • Mazek, Sherif A.
    • Structural Engineering and Mechanics
    • /
    • 제50권4호
    • /
    • pp.471-486
    • /
    • 2014
  • The number of explosive attacks on civilian structures has recently increased. Protection of structure subjected to blast load remains quite sophisticated to predict. The use of the pyramid cover system (PCS) to strengthen sandwich structures against a blast terror has great interests from engineering experts in structural retrofitting. The sandwich steel structure performance under the impact of blast wave effect is highlighted. A 3-D numerical model is proposed to study the PCS layer to strengthen sandwich steel structures using finite element analysis (FEA). Hexagonal core sandwich (XCS) steel panels are used to study structural retrofitting using the PCS layer. Field blast test is conducted. The study presents a comparison between the results obtained by both the field blast test and the FEA to validate the accuracy of the 3-D finite element model. The effects are expressed in terms of displacement-time history of the sandwich steel panels and pressure-time history effect on the sandwich steel panels as the explosive wave propagates. The results obtained by the field blast test have a good agreement with those obtained by the numerical model. The PCS layer improves the sandwich steel panel performance under impact of detonating different TNT explosive charges.

개발 화약의 내폭풍압 측정 (Internal Blast Tests of Developed Explosives)

  • 김성호;김정국;이준웅
    • 한국군사과학기술학회지
    • /
    • 제7권3호
    • /
    • pp.122-128
    • /
    • 2004
  • Internal blast performance test on developed explosives was carried out. Internal blast means a blast wave in closed chambers like tunnels, bunkers, operation center and chamber of ships. We used Anpa tunnel for our test facility. We performed two series of tests to measure internal blast of developed explosives. Three different kinds of cast PBXs, DXD-09, DXD-10, DXD-18, and conventional explosive, Tritonal, were used in our test. The explosives were cast as a charge of 108mm diameter in a plastic tube of a 3mm thickness. The length of charges 4ere adjusted as a weight 3kg. A melt-cast explosive, tritonal, was used as a reference. Pentolite booster was used. The cylindrical boosters have a 95mm diameter and 47.5mm height. The results showed that there may be some differences between the performances in the air blast tests and those in the internal blast tests. The results showed that DXD-10, the best performance in air blast tests, showed the poorest performance in internal blast among the explosives tested. On the other hand, DXD-18 showed exactly the opposite trend. This is probably due to the highest contents of aluminum and inert binder in DXD-18. DXD-18 has $38\;wt\;\%$ of aluminum and $17\;wt\;\%$ of inert binders.

암반절리를 고려한 발파진동 영향평가 (Assessment of Blast-induced Vibration for the Stability of Discontinuous Rock Mass)

  • 박병기;전석원;박광준;도덕수;김태훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.485-492
    • /
    • 2005
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced vibration and the stability evaluation must be performed before blasting activities. Dynamic analysis has been Increased recently in order to analyze the effect of the blast-induced vibration. Most of the previous studies, however, were based on the continuum analysis unable to consider rock joints which significantly affect the wave propagation and attenuation characteristics. They also adopted pressure curves estimated by theoretical or empirical equations as input detonation load, thus there were very difficult to reflect the characteristics of propagating media. In this study, therefore, we suggested a discontinuum dynamic analysis technique which uses velocity waveform obtained from a test blast as an input detonation load. A distinct element program, UDEC was used to consider the effect of rock joints. In order to verify the validity of proposed method, the test blast was simulated. The predicted results from the proposed method showed a good agreement with the measured vibration data from the test blast Through the dynamic numerical modelling on the planned road tunnel and slope, we evaluated the effect of blast-induced vibration and the stability of rock slope.

벼에 발생하는 목 도열병 및 이삭 도열병 검정을 위한 실험방법 개발 (Development of Virulence Test Methods for Neck and Panicle Blast Disease)

  • 지명환;박숙영
    • 식물병연구
    • /
    • 제21권2호
    • /
    • pp.103-106
    • /
    • 2015
  • 벼 도열병은 벼의 조직에 따라서 잎, 마디, 목, 그리고 이삭의 병징에 의해 특성화된다. 심각한 수량 손실이 잎 도열병 보다는 목도열병과 이삭도열병이 원인이 됨에도 불구하고, 분리된 균주의 병원력 검정은 목과 이삭 대신 잎에서 수행되었다. 이 연구에서 우리는 목과 이삭 도열병을 위한 병원성 검정 방법을 개발하였다. 병원력 검정을 위해, 잎, 목, 그리고 이삭 도열병으로 부터 각각 3개의 대표균주를 선발하였다. 벼에 도열병균을 접종한 후 48시간 동안 고습도생장상에서 두었을 때, 24시간보다 목과 이삭에서 높은 발병률을 보였다. 잎 도열병 검정과 다르게, 목과 이삭에서의 전형적인 병반은 접종 14일 후 나타났다. 이 연구방법은 앞으로 벼 도열병의 벼 조직 별 병원성 검정방법을 위해 활용될 수 있을 것이다.

압력배출구를 설치한 전동화 차량 배터리 시험실의 내부 폭압 평가 (Evaluation of Internal Blast Overpressures in Test Rooms of Elcetric Vehicles Battery with Pressure Relief Vents)

  • 방승기;신진원;정현진
    • 한국지열·수열에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.7-18
    • /
    • 2022
  • Secondary batteries used in electric vehicles have a potential risk of ignition and explosion. Various safety measures are being taken to prevent these risks. A numerical study was performed using a computational fluid dynamics code on the cases where pressure relief vents that can reduce the blast overpressures of batteries were installed in the through-compression test room, short-circuit drop test room, combustion test room, and immersion test room in facilities rleated to battery used in electric vehicles. This study was conducted using the weight of TNT equivalent to the energy release from the battery, where the the thermal runaway energy was set to 324,000 kJ for the capacity of the lithium-ion battery was 90 kWh and the state of charge (SOC) of the battery of 100%. The explosion energy of TNT (△HTNT) generally has a range of 4,437 to 4,765 kJ/kg, and a value of 4,500 kJ/kg was thus used in this study. The dimensionless explosion efficiency coefficient was defined as 15% assuming the most unfavorable condition, and the TNT equivalent mass was calculated to be 11 kg. The internal explosion generated in a test room shows the very complex propagation behavior of blast waves. The shock wave generated after the explosion creates reflected shock waves on all inner surfaces. If the internally reflected shock waves are not effectively released to the outside, the overpressures inside are increased or maintained due to the continuous reflection and superposition from the inside for a long time. Blast simulations for internal explosion targeting four test rooms with pressure relief vents installed were herein conducted. It was found that that the maximum blast overpressure of 34.69 bar occurred on the rear wall of the immersion test room, and the smallest blast overpressure was calculated to be 3.58 bar on the side wall of the short-circuit drop test room.

순환골재 및 소각장 애시를 자극제로 사용한 고로슬래그 미분말 다량치환 콘크리트의 Mock-up 성능평가 (Mockup Test of the High Volume Blast Furnace Slag Concrete Using Recycled Aggregates and Incinerator Ash)

  • 김영희;곽용진;김준호;이향재;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.19-21
    • /
    • 2012
  • This paper was to investigate the effect of incinerator ash on engineering properties of the high volume blast furnace slag concrete through Mock-up test. Test results revealed that the use of recycled aggregates resulted in increase of slump compared with the OPC concrete. But, the use of recycled aggregates did not affect the results of air contents and chloride contents. The use of recycled aggregates showed shortening of setting time of high volume blast furnace slag concrete. When the recycled aggregate was used, delay in strength development at early age happened with high volume blast furnace slag concrete compared with that of OPC concrete.

  • PDF

Injection of Waste Plastics into the Blast Furnace and Its Effect on Furnace Conditions

  • Heo, Nam-Hwan;Baek, Chan-Yeong;Yim, Chang-Hee
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.755-758
    • /
    • 2001
  • Most of the waste plastics are incinerated and landfilled now, leading to much environmental problems. The technology of injection into the blast furnace was developed as a useful recycling method of waste plastics, and applied to the actual operation in several ironmaking companies. We carried out the test operation to inject continuously the two kinds of waste plastics through four tuyeres of the Foundry blast furnace in POSCO by 130 ton of total amount. From this test operation, we analyzed the coke replacement ratio, the permeability, the heat load and other changes of furnace conditions with the injection of waste plastics into the blast furnace. Some trials based upon the theoretical approaches were applied to examine the efficiencies of blast furnace.

  • PDF