• Title/Summary/Keyword: Blast design

Search Result 368, Processing Time 0.023 seconds

Factors governing dynamic response of steel-foam ceramic protected RC slabs under blast loads

  • Hou, Xiaomeng;Liu, Kunyu;Cao, Shaojun;Rong, Qin
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.333-346
    • /
    • 2019
  • Foam ceramic materials contribute to the explosion effect weakening on concrete structures, due to the corresponding excellent energy absorption ability. The blast resistance of concrete members could be improved through steel-foam ceramics as protective cladding layers. An approach for the modeling of dynamic response of steel-foam ceramic protected reinforced concrete (Steel-FC-RC) slabs under blast loading was presented with the LS-DYNA software. The orthogonal analysis (five factors with five levels) under three degrees of blast loads was conducted. The influence rankings and trend laws were further analyzed. The dynamic displacement of the slab bottom was significantly reduced by increasing the thickness of steel plate, foam ceramic and RC slab, while the displacement decreased slightly as the steel yield strength and the compressive strength of concrete increased. However, the optimized efficiency of blast resistance decreases with factors increase to higher level. Moreover, an efficient design method was reported based on the orthogonal analysis.

CFD-Based Overpressure Evaluation Inside Expansion Chamber-Applied Protective Tunnels Subjected to Detonation of High Explosives (확장챔버를 적용한 방호터널 내부의 CFD 해석 기반 폭발압력 평가)

  • Shin, Jinwon;Pang, Seungki
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.25-34
    • /
    • 2023
  • This paper presents a computational fluid dynamics (CFD) analysis to investiagate the effect of expansion chamber on overpressure reduction in protective tunnels subjected to detonation of high explosives. A commercial CFD code, Viper::Blast, was used to model the blast waves in a protective tunnel with a length of 160 m, width of 8.9 m and height of 7.2 m. Blast scenarios and simulation matrix were establihsed in consideration of the design parameters of expansion chamber, including the chamber lengths of 6.1 m to 12.1 m, widths of 10.7 m to 97 m, length to width ratios of 0.0 to 5.0, heights of 8.0 m and 14.9 m, and ratios of chamber to tunnel width of 1.2 to 10.9 m. A charge weight of TNT of 1000 kg was used. The mesh sizes of the numerical model of the protective tunnel were determined based on a mesh convergence study. A parametric study based on the simulation matrix was performed using the proposed CFD tunnel model and the optimized shape of expansion chamber of the considered tunnel was then proposed based on the numerical results. Design recommendations for the use of expansion chamber in protective tunnel under blast loads to reduce the internal overpressures were finally provided.

A Review on Practical Use of Simple Analysis Method based on SDOF Model for the Stiffened Plate Structures subjected to Blast Loads (폭발하중을 받는 보강판 구조물의 간이 해석법에 대한 실용성 검토)

  • Kim, Ul-Nyeon;Ha, Simsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.70-79
    • /
    • 2020
  • The offshore installation units may be subjected to various accidental loads such as collision from supply vessels, impact from dropped objects, blast load from gas explosion and thermal load from fire. This paper deals with the design and strength evaluation method of the stiffened plate structures in response to a blast load caused by a gas explosion accident. It is a comprehensive review of various items used in actual project such as the size and type of the explosive loads, general design procedure/concept and analysis method. The structural analyses using simple analysis methods based on SDOF model and nonlinear finite element analysis are applied to the particular FPSO project. Also validation studies on the design guidance given by simple analysis method based on SDOF model have also considered several items such as backpressure effects, material behavior and duration time of the overpressure. A good correlation between the prediction made by simple analysis method based on SDOF model and nonlinear finite element analysis can be generally obtained up to the elastic limit.

Optimization of structural and mechanical engineering problems using the enriched ViS-BLAST method

  • Dizangian, Babak;Ghasemi, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.613-626
    • /
    • 2021
  • In this paper, an enhanced Violation-based Sensitivity analysis and Border-Line Adaptive Sliding Technique (ViS-BLAST) will be utilized for optimization of some well-known structural and mechanical engineering problems. ViS-BLAST has already been introduced by the authors for solving truss optimization problems. For those problems, this method showed a satisfactory enactment both in speed and efficiency. The Enriched ViS-BLAST or EVB is introduced to be vastly applicable to any solvable constrained optimization problem without any specific initialization. It uses one-directional step-wise searching technique and mostly limits exploration to the vicinity of FNF border and does not explore the entire design space. It first enters the feasible region very quickly and keeps the feasibility of solutions. For doing this important, EVB groups variables for specifying the desired searching directions in order to moving toward best solutions out or inside feasible domains. EVB was employed for solving seven numerical engineering design problems. Results show that for problems with tiny or even complex feasible regions with a larger number of highly non-linear constraints, EVB has a better performance compared to some records in the literature. This dominance was evaluated in terms of the feasibility of solutions, the quality of optimum objective values found and the total number of function evaluations performed.

Parameter Analysis of Swedish Bench Blast Design using Robust Design Method (강건설계법을 이용한 스웨덴식 벤치발파의 설계 인자 분석)

  • Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.1-5
    • /
    • 2013
  • Parameters of Swedish bench blast design was analyzed by robust design method. Orthogonal array which is adopted in this study was $L_9(3^4)$ and the parameters were hole diameter, explosive type, hole inclination and rock factor of 3 levels. Result of analysis showed that maximum and minimum burden are most affected by hole diameter, followed by explosive type, rock type and inclination of hole. Parameters affecting specific charge are in the order of rock type, explosive type and to specific drilling are hole diameter and explosive type. Cost analysis showed that robust design is capable of parameter optimization.

Numerical Analysis on the Ventilation System Improvement in Air Shot Blast Room (Air Shot Blast 작업실 내부 환기 시스템 개선에 관한 수치해석)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.861-868
    • /
    • 2022
  • The purpose of this study is to design an effective atmospheric environment system through the design of the dust collection in the air shot room being operated in a domestic shipyard. The ventilation system in the current air shot room mostly uses a dust collecting filter to filter internal particles and releases them in the atmosphere. A conventional design was made too much. In order to prevent an error and draw an optimal design, Computational fluid dynamics (CFD) tried to be applied only to air shot room. In the advanced design technique, computer simulation was conducted to secure basic design data. In order to find the basic design of the ventilation system and the flow field in the air shot room at propeller mold workplace of a shipyard, the CFD was conducted. In the case of Model-1 as a conventional workplace, where air flows in the inlet due to the subatmospheric pressure generated by inhalation of an air blower and flows out to the outlet, a discharge flow rate was somewhat low, and there was the holdup zone in the room. In the case of Model-2 as an improved model, the ventilation system was improved in the Push-Pull type, and the holdup of the internal flow field was improved.

Rock Mass Classification and Its Use in Blast Design for Tunneling (암분류기법과 터널굴착을 위한 발파설계에의 활용)

  • Ryu Chang-Ha;SunWoo Choon;Choi Byung-Hee
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • Building tunnels means dealing with what rock is encountered. Relocation of the site of the underground structure is rarely possible. Tunneling engineers and miners have to cope with the quality of the rock mass as it is. Different tunneling philosophies and different rock classification methods have been developed in various countries. Most of the rock classification methods are based on the response of the rock mass to the excavation. Tunnel support requirements could be assessed analytically, supplemented by rock mass classification predictions, and verified by measurements during construction. Rock mass classifications on their own should only be used for preliminary, planning purposes and not for final tunnel support. Design of blast pattern in tunneling projects in Korea is also mostly prepared according to the general rock classification methods such as RMR or Q. They, however, do not take into account the blast performance, and as a consequence, produce poor blasting results. In this paper, the methods of general rock classification and blast design for tunnel excavation in Korea are reviewed, and efforts to develop a new classification method, reflecting the blasting performance, are presented.

Evaluation of unanchorage blast-resistant modular structures subjected to blast loads and human injury response

  • Ali Sari;Omer Faruk Nemutlu;Kadir Guler;Sayed Mahdi Hashemi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.5
    • /
    • pp.525-538
    • /
    • 2024
  • An explosion from a specific source can generate high pressure, causing damage to structures and people in and around them. For the design of protective structures, although explosion overpressure is considered the main loading parameter, parts are only considered using standard design procedures, excluding special installations. Properties of the explosive, such as molecular structure, shape, dimensional properties, and the physical state of the charge, determine the results in a high-grade or low-grade explosion. In this context, it is very important to determine the explosion behaviors of the structures and to take precautions against these behaviors. Especially structures in areas with high explosion risk should be prepared for blast loads. In this study, the behavior of non-anchored blast resistant modular buildings was investigated. In the study, analyzes were carried out for cases where modular buildings were first positioned on a reinforced concrete surface and then directly on the ground. For these two cases, the behavior of the modular structure placed on the reinforced concrete floor against burst loads was evaluated with Stribeck curves. The behavior of the modular building placed directly on the ground is examined with the Pais and Kausel equations, which consider the structure-ground interaction. In the study, head and neck injuries were examined by placing test dummies to examine human injury behavior in modular buildings exposed to blast loads. Obtained results were compared with field tests. In both cases, results close to field tests were obtained. Thus, it was concluded that Stribeck curves and Pais Kausel equations can reflect the behavior of modular buildings subjected to blast loads. It was also seen at the end of the study that the human injury criteria were met. The results of the study are explained with their justifications.

Tunnel Blasting Design Suited to Given Specific Charge (비장약량 맞춤형 터널발파 설계방법)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Jeong, Ju-Hwan
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.33-41
    • /
    • 2009
  • Specific charge, also called powder factor, is defined as the total explosive mass in a blast divided with the total volume or weight of rock to be fragmented. It is a well-known fact that change in explosive consumption per ton or per cubic meter of rock is always a good indication of changed rock conditions. In mining, it is common to use explosive consumption per ton of ore as a measure of the blastability for rock. On the contrary, in civil engineering, it is common to use explosive consumption per cubic meter of rock. In this paper, we adopt the definition of the civil engineering because we are mainly concerned with tunnel blasting. Up to now, although various methods for tunnel blast design have been proposed, there are so many cases in which the proposed methods do not work well. These may be caused by the differences in rock conditions between countries or regions, and can give a serious technical difficulty to a contractor. But if we know the specific charge for a given rock, then the blast design can become much more easier. In this respect, we suggest an algorithm for tunnel blast design that can exactly produce the predetermined specific charge as a result of the design. The algorithm is based on the concept of assigning different fixation factors to various parts of tunnel section, and may be used in combination with the known methods of tunnel blast design.

A Study on the Mix Design Model of 40MPa Class High Strength Mortar with Rice Husk Powder Using Neural Network Theory (신경망 이론을 적용한 40MPa급 증해추출 왕겨분말을 혼입한 고강도 무시멘트 모르타르 배합설계모델에 관한 연구)

  • Cho, Seung-Bi;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.156-157
    • /
    • 2022
  • The purpose of this study is to propose a 40MPa mortar mixed design model that applies the neural network theory to minimize wasted effort in trial and error. A mixed design model was applied to each of the 60 data using fly ash, blast furnace slag fine powder and thickened rice husk powder. And in the neural network model, the optimized connection weight was obtained by repeatedly applying it to the MATLAB. The completed mixed design model was demonstrated by analyzing and comparing the predicted values of the mixed design model with those measured in the actual compressive strength test. As a result of the mixed design verification experiment, the error rates of the double mixed non-cement mortar using blast furnace slag fine powder and rice husk powder at a height of 40MPa were 3.24% and 3.4%. Mixed with fly ash and rice husk powder had an error rate of 3.94% and 5.8%. The error rate of the triple mixed non-cement mortar of the rice husk powder, fly ash, and blast furnace slag fine powder was 2.5% and 5.1%.

  • PDF