• Title/Summary/Keyword: Blast design

Search Result 368, Processing Time 0.025 seconds

Seismic and Blast Design of Industrial Concrete Structures with Precast Intermediate Shear Wall System (프리캐스트 중간전단벽 시스템이 사용된 콘크리트 산업 시설물의 내진 및 방폭설계)

  • Lee, Won-Jun;Kim, Min-Su;Kim, Seon-hoon;Lee, Deuckhang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.93-101
    • /
    • 2024
  • Code-compliant seismic design should be essentially applied to realize the so-called emulative performance of precast concrete (PC) lateral force-resisting systems, and this study developed simple procedures to design precast industrial buildings with intermediate precast bearing wall systems considering both the effect of seismic and blast loads. Seismic design provisions specified in ACI 318 and ASCE 7 can be directly adopted, for which the so-called 1.5Sy condition is addressed in PC wall-to-wall and wall-to-base connections. Various coupling options were considered and addressed in the seismic design of wall-to-wall connections for the longitudinal and transverse design directions to secure optimized performance and better economic feasibility. On the other hand, two possible methods were adopted in blast analysis: 1) Equivalent static analysis (ESA) based on the simplified graphic method and 2) Incremental dynamic time-history analysis (IDTHA). The ESA is physically austere to use in practice for a typical industrial PC-bearing wall system. Still, it showed an overestimating trend in terms of the lateral deformation. The coupling action between precast wall segments appears to be inevitably required due to substantially large blast loads compared to seismic loads with increasing blast risk levels. Even with the coupled-precast shear walls, the design outcome obtained from the ESA method might not be entirely satisfactory to the drift criteria presented by the ASCE Blast Design Manual. This drawback can be overcome by addressing the IDTHA method, where all the design criteria were fully satisfied with precast shear walls' non-coupling and group-coupling strength, where each individual or grouped shear fence was designed to possess 1.5Sy for the seismic design.

Experimental and numerical investigation of RC sandwich panels with helical springs under free air blast loads

  • Rashad, Mohamed;Wahab, Mostafa M.A.;Yang, T.Y.
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.217-230
    • /
    • 2019
  • One of the most important design criteria in underground structure is to design lightweight protective layers to resist significant blast loads. Sandwich blast resistant panels are commonly used to protect underground structures. The front face of the sandwich panel is designed to resist the blast load and the core is designed to mitigate the blast energy from reaching the back panel. The design is to allow the sandwich panel to be repaired efficiently. Hence, the underground structure can be used under repeated blast loads. In this study, a novel sandwich panel, named RC panel - Helical springs- RC panel (RHR) sandwich panel, which consists of normal strength reinforced concrete (RC) panels at the front and the back and steel compression helical springs in the middle, is proposed. In this study, a detailed 3D nonlinear numerical analysis is proposed using the nonlinear finite element software, AUTODYN. The accuracy of the blast load and RHR Sandwich panel modelling are validated using available experimental results. The results show that the proposed finite element model can be used efficiently and effectively to simulate the nonlinear dynamic behaviour of the newly proposed RHR sandwich panels under different ranges of free air blast loads. Detailed parameter study is then conducted using the validated finite element model. The results show that the newly proposed RHR sandwich panel can be used as a reliable and effective lightweight protective layer for underground structures.

A fundamental study on the automation of tunnel blasting design using a machine learning model (머신러닝을 이용한 터널발파설계 자동화를 위한 기초연구)

  • Kim, Yangkyun;Lee, Je-Kyum;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.431-449
    • /
    • 2022
  • As many tunnels generally have been constructed, various experiences and techniques have been accumulated for tunnel design as well as tunnel construction. Hence, there are not a few cases that, for some usual tunnel design works, it is sufficient to perform the design by only modifying or supplementing previous similar design cases unless a tunnel has a unique structure or in geological conditions. In particular, for a tunnel blast design, it is reasonable to refer to previous similar design cases because the blast design in the stage of design is a preliminary design, considering that it is general to perform additional blast design through test blasts prior to the start of tunnel excavation. Meanwhile, entering the industry 4.0 era, artificial intelligence (AI) of which availability is surging across whole industry sector is broadly utilized to tunnel and blasting. For a drill and blast tunnel, AI is mainly applied for the estimation of blast vibration and rock mass classification, etc. however, there are few cases where it is applied to blast pattern design. Thus, this study attempts to automate tunnel blast design by means of machine learning, a branch of artificial intelligence. For this, the data related to a blast design was collected from 25 tunnel design reports for learning as well as 2 additional reports for the test, and from which 4 design parameters, i.e., rock mass class, road type and cross sectional area of upper section as well as bench section as input data as well as16 design elements, i.e., blast cut type, specific charge, the number of drill holes, and spacing and burden for each blast hole group, etc. as output. Based on this design data, three machine learning models, i.e., XGBoost, ANN, SVM, were tested and XGBoost was chosen as the best model and the results show a generally similar trend to an actual design when assumed design parameters were input. It is not enough yet to perform the whole blast design using the results from this study, however, it is planned that additional studies will be carried out to make it possible to put it to practical use after collecting more sufficient blast design data and supplementing detailed machine learning processes.

Preliminary Structural Design of Blast Hardened Bulkhead (The 1st Report : Formulation of Simplified Structural Analysis/Design Method) (폭발강화격벽의 초기구조설계에 관한 연구 (제1보 : 간이 구조 해석/설계 기법 정식화))

  • Nho, In Sik;Park, Man-Jae;Cho, Yun Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.371-378
    • /
    • 2018
  • Internal detonation of a warhead inside a compartment of naval vessel can result in serious blast damages including plastic deformation and rupture of the structural members especially bulkhead due to the huge explosive impact pressure, fragments and high temperature flame. To secure watertight integrity and to prevent the domino-type flooding of neighbouring compartments caused by the rupture of bulkheads, it is necessary to develop the structural design technology of Blast Hardened Bulkheads(BHB) which can resist the blast impact pressure of threatening weapons to increase the survivability of naval vessels. This study dealt with the simplified structural response analysis of BHB under impact pressure of confined explosion and aimed to develop the efficient and rational design method of BHB and joint structures which can be applied at initial design stage. The present 1st report dealt with the phenomena of explosive detonation surveying the preceding experimental/theoretical research and the characteristics of time history of blast pressure including the peak value and duration time were examined. And to predict the large plastic deformation behaviors of BHB by the huge blast pressure reasonably, the plastic hinge method including the membrane effects was formulated. It was applied to the simplified structural design equations. The following report will deal with the application and adjustment process of the structural scantling equations to the actual BHB design and verification of validity of them.

Blast analysis of concrete arch structures for FRP retrofitting design

  • Nam, Jin-Won;Kim, Ho-Jin;Yi, Na-Hyun;Kim, In-Soon;Kim, Jang-Ho Jay;Choi, Hyung-Jin
    • Computers and Concrete
    • /
    • v.6 no.4
    • /
    • pp.305-318
    • /
    • 2009
  • Fiber Reinforced Polymer (FRP) is widely used for retrofitting concrete structures for various purposes. Especially, for the retrofitting of concrete structures subjected to blast loads, FRP is proven to be a very effective retrofitting material. However, a systematic design procedure to implement FRP for concrete structure retrofitting against blast loads does not exist currently. In addition, in case of concrete structures with inarticulate geometrical boundary conditions such as arch structures, an effective analysis technique is needed to obtain reliable results based on minimal analytical assumptions. Therefore, in this study, a systematic and efficient blast analysis procedure for FRP retrofitting design of concrete arch structure is suggested. The procedure is composed of three sequential parts of preliminary analysis, breach and debris analysis, and retrofit-material analysis. Based on the suggested procedure, blast analyses are carried out by using explicit code, LS-DYNA. The study results are discussed in detail.

Parametric Study on Explosion Impact Response Characteristics of Offshore Installation's Corrugated Blast Wall (해양플랜트 설비 Corrugated Blast Wall의 폭발 충격응답 인자 특성에 관한 파라메트릭 연구)

  • Kim, Bong-Ju;Kim, Byung-Hoon;Sohn, Jung-Min;Paik, Jeom-Kee;Seo, Jung-Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.46-54
    • /
    • 2012
  • More than 70% of the accidents that occur on offshore installations stem from hydrocarbon explosions and fires, which, because they involve blast effects and heat, are extremely hazardous and have serious consequences in terms of human health, structural safety, and the surrounding environment. Blast barriers are integral structures in a typical offshore topside module to protect personnel and safety critical equipment by preventing the escalation of events caused by hydrocarbon explosions. Many researchers have shown the adequacy of the simple design tool commonly used by the offshore industry for the analysis and design of blast walls. However, limited information is available for corrugated blast wall design with explosion impact response characteristics. Therefore, this paper presents a parametric study on the explosion impact response characteristics of an offshore installation's stainless steel corrugated blast wall. This paperalso investigates and recommends design parameters for the structural design of a corrugated blast wall based on a nonlinear structural analysis of experiential results.

Design Optimization of Blast and Ballistic Impact Resistance Sandwich Panels Based on Kriging Approximate Models (크리깅 근사모델기반 복합충격 저항 샌드위치 패널 최적설계)

  • Jang, Sungwoo;Baik, Woon-Kyoung;Choi, Hae-Jin;Park, Soon Suk
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.367-374
    • /
    • 2015
  • Sandwich panels consisting of various materials have widely been applied for mitigating dynamic impacts such as ballistic and blast impacts. Especially, the selection of materials for different core set-ups can directly influence its performance. In this study, we design the sandwich panels for alleviating ballistic and blast impacts by controlling the stacking sequence of core materials and their thicknesses. FEM studies are performed to simulate the dynamic behavior of sandwich panels subjected to ballistic and blast impacts. Delamination between the core layers is also considered in the FEM studies for feasible design. Based on the FEM data, kriging models are generated for approximating design space and quickly predicting the FEM outputs. Finally, design optimizations are implemented to find the optimum stacking sequence of core materials and thicknesses with given impact situations.

A Study On Structural Stability Of Blast Door by Blast Pressure (폭압에 의한 방폭문의 구조적 안정성에 대한 연구)

  • Kim, Nam Hyuk;Park, Kwan Jin;Lee, Keun-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.8-15
    • /
    • 2016
  • The purpose of this study is to design a model with the structural stability so as not to lose the operational function due to structural plastic or fail of a sliding blast door by blast pressure to this aim, a numerical simulation was performed using full-size experiments and M&S (Modeling & Simulation) of the sliding blast door. The sliding blast door ($W3,000{\times}H2,500mm$) under the blast load is in the form of a sliding type 2-way metal grill, which was applied by a design blast pressure (reflected pressure $P_r$) of 17 bar. According to the experimental results of a real sliding blast door under blast load, the blast pressure reached the sliding blast door approximately 4.3 ms after the explosion and lasted about 4.0 ms thereafter. The maximum blast pressure($P_r$) was 347.7 psi (2,397.3 kPa), it is similar to the UFC 3-340-02 of Parameter(91 %). In addition, operation inspection that was conducted for the sliding blast door after real test showed a problem of losing the door opening function, which was because of the fail of the Reversal Bolt that was installed to prevent the shock due to rebound of the blast door from the blast pressure. According to the reproduction of the experiment through M&S by applying the blast pressure measurement value of the full-size experiments, the sliding blast door showed a similar result to the full-size experiment in that the reversal bolt part failed to lose the function. In addition, as the pressure is concentrated on the failed reversal bolt, the Principal Tensile Failure Stress was exceeded in only 1.25 ms after the explosion, and the reversal bolt completely failed after 5.4 ms. Based on the result of the failed reversal bolt through the full-size experiment and M&S, the shape and size of the bolts were changed to re-design the M&S and re-analyze the sliding blast door. According to the M&S re-analysis result when the reversal bolt was designed in a square of 25 mm ($625mm^2$), the maximum pressure that the reversal bolt receives showed 81% of the principal tensile failure stress of the material, in plastic stage before fail.

Design and Implementation of V-BLAST for MIMO-OFDM Systems (MIMO-OFDM 시스템을 위한 V-BLAST의 설계 및 구현)

  • Choi Yong-Woo;Park In-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.415-418
    • /
    • 2004
  • This paper describes a VLSI implementation of BLAST detection for MIMO-OFDM systems. To achieve high speed requirement, we propose the fully pipeline architecture for BLAST structure. This design is implemented using $0.18{\mu}m$ CMOS technology. For a 4-transmit and 4-receive antennas system, it takes $7.5{\mu}s$ to calculate nulling vector and detection order from 48 channel matrixes.

  • PDF

An empirical formulation to predict maximum deformation of blast wall under explosion

  • Kim, Do Kyun;Ng, William Chin Kuan;Hwang, Oeju
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.237-245
    • /
    • 2018
  • This study proposes an empirical formulation to predict the maximum deformation of offshore blast wall structure that is subjected to impact loading caused by hydrocarbon explosion. The blast wall model is assumed to be supported by a simply-supported boundary condition and corrugated panel is modelled. In total, 1,620 cases of LS-DYNA simulations were conducted to predict the maximum deformation of blast wall, and they were then used as input data for the development of the empirical formulation by regression analysis. Stainless steel was employed as materials and the strain rate effect was also taken into account. For the development of empirical formulation, a wide range of parametric studies were conducted by considering the main design parameters for corrugated panel, such as geometric properties (corrugation angle, breadth, height and thickness) and load profiles (peak pressure and time). In the case of the blast profile, idealised triangular shape is assumed. It is expected that the obtained empirical formulation will be useful for structural designers to predict maximum deformation of blast wall installed in offshore topside structures in the early design stage.