• 제목/요약/키워드: Blast Slag Powder

Search Result 264, Processing Time 0.216 seconds

Investigation of Electrical Resistance Properties in Surface-Coated Lightweight Aggregate (표면코팅 경량골재의 전기저항 특성)

  • Kim, Ho-Jin;Kim, Chang-Hyun;Choi, Jung-Wook;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.727-738
    • /
    • 2023
  • In concrete, the interface between the aggregate and cement paste is often the most critical factor in determining strength, representing the weakest zone. Lightweight aggregate, produced through expansion and firing of raw materials, features numerous surface pores and benefits from low density; however, its overall aggregate strength is compromised. Within concrete, diminished aggregate strength can lead to aggregate fracture. When applying lightweight aggregate to concrete, the interface strength becomes critical due to the potential for aggregate fracture. This study involved coating the surface of the aggregate with blast furnace slag fine powder to enhance the interfacial strength of lightweight aggregate. The impedance of test specimens was measured to analyze interface changes resulting from this surface modification. Experimental results revealed a 4% increase in compressive strength following the coating of the lightweight aggregate surface, accompanied by an increase in resistance values within the impedance measurements corresponding with strength enhancement.

Mechanical and Electrical Properties of Self-sensing Grout Material with a High-Volume Ultrafine Fly Ash Replacement (초고분말 플라이 애시를 다량 치환한 자기감지형 그라우트재의 역학적 및 전기적 특성)

  • Lee, Gun-Cheol;Kim, Young-Min;Im, Geon-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.215-226
    • /
    • 2024
  • This study presents an experimental investigation into the performance of self-sensing grout formulated with a high volume of ultra-fine fly ash(UHFA). To explore the potential benefits of alternative cementitious materials, the research examined the effect of substituting UHFA with equal parts of blast furnace slag(BFS) fine powder. Both UHFA and BFS are byproducts generated in significant quantities by industrial processes. The evaluation focused on the fresh properties of the grout, including its flow characteristics, as well as the hardened properties such as compressive strength, dimensional stability(length change rate), and electrical properties. The experimental results demonstrated that incorporating UHFA resulted in a substantial reduction in the plastic viscosity of the grout, translating to improved flowability. Additionally, the compressive strength of the UHFA-modified grout surpassed that of the reference grout(without UHFA substitution) at all curing ages investigated. Interestingly, the electrical characteristics, as indicated by the relationships between FCR-stress and FCR-strain, exhibited similar trends for both grout mixtures.

Optimum Mix Proportion and Characteristics of the Combined Self Compacting Concrete according to Cement Types (시멘트 종류에 따른 병용계 자기충전 콘크리트의 최적배합비와 특성)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • This study is aimed to derive the optimum mix proportion of the combined self compacting concrete according to cement types (blast-furnace slag cement and belite cement) and to propose the basic data to field construction work after evaluating the quality properties. Specially, lime stone powder (LSP) as binder and viscosity agent are used in the combined self compacting concrete because slurry wall of an underground LNG storage tank should be kept stability of quality during concrete working. Replacement ratio of LSP is determined by confined water ratio test and main design factors including fine aggregate ratio ($S_r$), coarse aggregate ratio ($G_v$) and water-cement ratio (W/C) are selected. Also, quality properties including setting time, bleeding content, shortening depth and hydration heat on the optimum mix proportion of the combined self compacting concrete according to cement type are compared and analyzed. As test results, the optimum mix proportion of the combined self compacting concrete according to cement type is as followings. 1) Slag cement type-replacement ratio of LSP 13.5%, $S_r$ 47% and W/C 41%. 2) Belite cement type-replacement ratio of LSP 42.7%, Sr 43% and W/C 51%. But optimum coarse aggregate ratio is 53% regardless of cement types. Also, as test results regarding setting time, bleeding content, shortening depth and hydration heat of the combined self compacting concrete by cement type, belite cement type is most stable in the quality properties and is to apply the actual construction work.

Density and Water Absorption Characteristics of Artificial Lightweight Aggregates containing Stone-Dust and Bottom Ash Using Different Flux (폐석분 및 바텀애시를 사용한 인공경량골재의 융제(Flux) 종류에 따른 밀도 및 흡수율 특성)

  • Han, Min-Cheol;Shin, Jae-Kyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.49-55
    • /
    • 2012
  • In this paper, the physical properties of lightweight aggregate such as density and water absorption according to addition ratio and type of flux were investigated. When using $Na_2CO_3$ as flux of lightweight aggregate, burnability was available at low burning temperature and water absorption increased. And as increasing addition ratio of $CaCO_3$, NaOH, $Fe_2O_3$, absorption decreased and $CaCO_3$, NaOH, $Fe_2O_3$ were considered improper to use flux of lightweight aggregate because of high dried density. $Na_2SO_4$ was proper to use flux of lightweight aggregate due to dried density $1.35{\sim}1.50g/cm^3$ and lower absorption. When using glass abrasive sludge as flux of lightweight aggregate, dried density and water absorption were in the range of $1.45{\sim}1.55g/cm^3$ and 9~12% respectively. It was indicated that as increasing addition ratio of blast furnace slag powder, density increased whereas absorption decreased. In use of oxidizing slag as flux, artificial lightweight aggregate which have dried density $1.46g/cm^3$, water absorption 8,5 % can be manufactured at 10 % of addition ratio.

  • PDF

Influence of Mixtures and Curing Conditions on Strength and Microstructure of Reactive Powder Concrete Using Ternary Pozzolanic Materials (배합 및 양생조건이 3성분계 포졸란재를 이용한 RPC의 강도발현 특성에 미치는 영향)

  • Janchivdorj, Khulgadai;Choi, Seung-Hoon;So, Hyoung-Seok;Seo, Ki-Seog;So, Seung-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.457-465
    • /
    • 2013
  • This study discussed the influence of mixtures and curing conditions on the development of strength and microstructure of RPC using ternary pozzolanic materials. Through pilot experiment, various RPC was manufactured by adding single or mixed ternary pozzolanic materials such as silica fume, blast furnace slag and fly ash by mass of cement, up to 0~65%, and cured by using 4 types of method which are water and air-dried curing at $20^{\circ}C$, steam and hot-water curing at $90^{\circ}C$. The results show that the use of ternary pozzolanic materials and a suitable curing method are an effective method for improving development of strength and microstructure of RPC. The unit volume of cement was greatly reduced in RPC with ternary pozzolanic materials and unlike hydration reaction in cement, the pozzolanic reaction noticeably contributes to a reduction in hydration heat and dry shrinkage. A considerable improvement was found in the flexural strength of RPC using ternary pozzolanic materials, and then the utilization of a structural member subjected to bending was expected. The X-ray diffractometer (XRD) analysis and Scanning Electronic Microscope (SEM) revealed that the microstructure of RPC was denser by using the ternary pozzolanic materials than the original RPC containing silica fume only.

An Experimental Study on the Mechanical and Durability Properties of Ductile Cement Panel Used Vacuum Extrusion Molding (진공압출성형 고인성 시멘트 패널의 역학 및 내구특성에 관한 실험적 연구)

  • Rho, Hyoung-Nam;Lee, Jong-Suk;Han, Byung-Chan;Kwon, Young-Jin;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.473-476
    • /
    • 2008
  • Due to the pursuit of high function and international price increase in the field of construction, the application of the secondary product using cement is on the increase gradually in the construction industry in the pursuit of economic cost reduction by the shortening of the construction time like Expediting and the dry construction method at the same time. However, it is in very urgent situation of measures to improve the structural performance or durable performance because it is limited for use in terms of panel in interior exterior building or functional repair reinforce as yet. Accordingly, this study is to investigate applicability of permanent Formwork like mould with the structural performance or excellent durable performance in the field of construction, and to derive optimum mixture in the performance and quality of manufacture. As a result of analysis comparison with the dynamic and durable properties of vacuum extrusion molding high toughness cement panel according to the mixture of four conditions, this study has found that the test body of mixing ECC-DP3 using small filler and large granulated blast furnace slag and powder flame retardant had excellent relative hardness and bending stress strain. The durable performance has shown excellent tendency by the decrease of porosity and enhancement of water-tightness.

  • PDF

Properties of Hydration Heat of High-Strength Concrete and Reduction Strategy for Heat Production (고강도 콘크리트의 수화열 특성 및 발열 저감대책에 관한 연구)

  • Jaung, Jae-Dong;Cho, Hyun-Dae;Park, Seung-Wan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.203-210
    • /
    • 2012
  • Recently, the interest and demand for large-scale buildings and skyscrapers have been on the rise, and the performance of concrete is an area of high priority. Securing 'mass concrete and high strength concrete' is very important as a key construction technology. For high strength concrete, the high heat of hydration takes place inside the concrete because of the vitality of hydration in cement due to the large amount of powder, and leads to problems such as an increase of thermal stress due to the temperature difference with the outside, which results in cracks and slump loss. For this reason, measures to solve these problems are needed. This study aims to reduce the hydration heat of high strength concrete to control the hydration heat of mass concrete and high strength concrete, by replacing the type of admixture, The purpose of this study is to control the hydration heat of high strength concrete and mass concrete. Our idea for this purpose is to apply not only the types and contents of admixture but also incorporation mixing water to ice-flake. As a result of the test, the use of blast furnace slag and fly ash as admixture, and the use of ice-flake as mixing water can improve the liquidity of concrete and reduce slump loss. Significantly dropping the maximum temperature will contribute greatly to reducing cracks due to hydration heat in mass concrete and high strength concrete, and improve quality.

Binding of the Hexavalent Chromium Ions in the Process of Cement Hydration (시멘트 수화에 따른 6가 크롬의 고정화 특성)

  • Jung, Min-Sun;Hwang, Jun-Pil;Hong, Sung-In;Ann, Ki-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.88-94
    • /
    • 2013
  • The hexavalent chromium (Cr(VI)) is well known as a hazardous ion, presumably inducing dermatic diseases and if serious cancer. The present study concerns the binding capacity of Cr(VI) ions in the cement powder and matrix for a quantitative technique of Cr(VI) ions in cement to influence human health. Both the water-soluble and acid-soluble Cr(VI) ions present in 3 types of ordinary Portland cement (OPC), pulverised fuel ash (PFA), ground granulated blast furnace slag (GGBS), and silica fume (SF) were measured using the spectrophotometer. As a result, it was found that the concentration of water-soluble Cr(VI) ion in cement ranged from 10.5 to 18.9mg/kg-cement, and in the additional materials a very low value of Cr(VI) ion was measured. Acid-soluble Cr(VI) ion was even higher than water-soluble Cr(VI) ion, ranging from 172.4 to 318.2mg/kg-cement. Nevertheless, the concentration of acid-soluble Cr(VI) ion is not proportional to addition of acid. It depends rather the variable pH of solvent involving cement paste. As enough cement hydration occurs, the binding capacity of Cr(VI) ion increases, inhibiting this ions from leaching out in the presence of hydration products such as ettringite or tri-calcium aluminate which bind Cr(VI) ion by ion-exchange.

Fundamental Properties of Fly ash Concrete Containing Lightly Burnt MgO Powder (저온 소성한 MgO 분말을 함유한 플라이애시 콘크리트의 기본 물성)

  • Choi, Seul-Woo;Jang, Bong-Seok;Lee, Kwang-Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.475-481
    • /
    • 2013
  • Although the lightly burnt MgO at $850{\sim}1000^{\circ}C$ has expansibility, it does not lead to unsound concrete. The expansion of MgO could compensate for shrinkage of concrete for a long-term, because the hydration of MgO occurs at a slow pace. Recently, the study and application of mineral admixture such as fly ash and blast furnace slag have increased for the hydration heat reduction, durability improvement, and reducing $CO_2$ emission in the construction industry. Thus, it is necessary to research on the concrete that contains both a mineral admixture and MgO as an expansion agent. This study investigates fundamental properties of fly ash concrete with lightly burnt MgO through various experiments. The adiabatic temperature test results showed that the fly ash concrete with MgO of the 5% replacement ratio had the slower pace of the temperature rise and the lower final temperature than the fly ash concrete. The influences of MgO on long-term compressive strength varied depending on water-binder ratio, and the long-term length change test results indicated the expansion effects of the FA concrete containing MgO.

Characteristics of Mine Liner According to the Replacement Ratio of Nano-Silica and Silica-Fume (나노실리카 및 실리카흄 대체율에 따른 차수재의 특성)

  • Kang, Suk-Pyo;Lee, Hee-Ra;Kang, Hye-Ju;Nam, Seong-Young;Kim, Chun-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.66-73
    • /
    • 2019
  • Approximately 80% of the mines are vacated or abandoned mines and are mostly left without suitable environmental treatment facilities. In the area around the abandoned mine site, problems such as drainage of acidic city drainage and leakage of leachate occur, and ground subsidence caused by this can cause a safety accident due to sink hole occurrence. In this study, flow, compressive strength, water uptake, pore and hydration characteristics were investigated to investigate the basic properties of liner and cover material based on the replacement ratio of nano silica and silica fume in the existing blast - furnace slag fine powder. As a result, as the substitution ratio of nano silica and silica fume increased, the flow and compressive strength of nano silica specimens increased and the absorption rate decreased. In the case of pore characteristics, the amount of pores decreased as the substitution ratio of nano silica and silica fume increased. Especially, the capillary porosity of 10-1,000 nm diameter decreased. Ray diffraction analysis and SEM measurement showed that the peak positions of the hydration products were almost the same when compared with the 5% alternative test samples of Plain and silica fume.