• Title/Summary/Keyword: Blast Pressure

Search Result 229, Processing Time 0.024 seconds

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.

Setting Time, Compressive Strength and Drying Shrinkage of Mortar with Alpha-Calcium Sulfate Hemihydrate (α형 반수석고를 치환한 모르타르의 응결 및 압축강도, 건조수축 특성)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Shin, Kyoung-Su;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.117-124
    • /
    • 2017
  • In this study, to evaluate the setting time, compressive strength and drying shrinkage of ordinary Portland cement and Portland blast-furnace slag cement mortar with 0, 10, 20, 30 wt.% alpha-calcium sulfate hemihydrate. As a results, as the replacement ratio of alpha-calcium sulfate hemihydrate increased, the initial setting time of ordinary Portland cement and Portland blast-furnace slag cement mortar was faster. In addition, the compressive strength decreased with increasing replacement ratio of alpha-calcium sulfate hemihydrate in both ordinary Portland cement mortar and Portland blast-furnace slag cement mortar. The strength development of Portland blast-furnace slag cement mortar with alpha-calcium sulfate hemihydrate was effective than that of ordinary Portland cement mortar. On the other hand, in the case of the mortar with alpha-calcium sulfate hemihydrate, it was confirmed that shrinkage deformation was reduced at the early age by growth pressure of needle-shaped ettringite crystals produced by incorporation of alpha-calcium sulfate hemihydrate. However, the effect of inhibiting shrinkage deformation of mortar with alpha-calcium sulfate hemihydrate was not significant as the age passed. Therefore, it is considered that the alpha-calcium sulfate hemihydrate is useful as a construction material.

FE Analysis on the Structural Behavior of a Double-Leaf Blast-Resistant Door According to the Support Conditions (지지조건 변화에 따른 양개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Sung-Wook;Moon, Jae-Heum;Kim, Won-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.339-349
    • /
    • 2020
  • Double-leaf blast-resistant doors consisting of steel box and slab are application-specific structures installed at the entrances of protective facilities. In these structural systems, certain spacing is provided between the door and wall. However, variation in the boundary condition and structural behavior due to this spacing are not properly considered in the explosion analysis and design. In this study, the structural response and failure behavior based on two variables such as the spacing and blast pressure were analyzed using the finite element method. The results revealed that the two variables affected the overall structural behavior such as the maximum and permanent deflections. The degree of contact due to collision between the door and wall and the impact force applied to the door varied according to the spacing. Hence, the shear-failure behavior of the concrete slab was affected by this impact force. Doors with spacing of less than 10 mm were vulnerable to shear failure, and the case of approximately 15-mm spacing was more reasonable for increasing the flexural performance. For further study, tests and numerical research on the structural behavior are needed by considering other variables such as specifications of the structural members and details of the slab shear design.

Computational Numerical Analysis and Experimental Validation of the Response of Reinforced Concrete Structures under Internal Explosion (내부폭발 시 철근콘크리트 구조물 거동에 대한 전산수치해석과 실험적 검증)

  • Ji, Hun;Moon, Sei-Hoon;Chong, Jin-Wung;Sung, Seung-Hun;You, Yang-Sun
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.101-109
    • /
    • 2018
  • Field experiments as well as numerical analyses with finite element analysis codes are two valuable and complemental ways to understand the structural response under explosive blast load. However, there seems to be only limited information available about finite element analysis and experimental validation on the response of structural components under internal explosions. For complementary use of the two ways, the numerical analyses should be validated with field experiments by comparing their results. In this paper, a small-scaled reinforced concrete building with a room is employed for experimental investigations. An amount of TNT is detonated at the center of the room. Pressure at three different sites in the room, displacement of centers of two walls, and damage patterns of four walls are measured and compared to results from numerical analyses. The experimental results are much similar to the numerical analyses results. The finite element analysis code ANSYS AUTODYN is employed to numerically analyze both pressure distribution inside the room and response of walls subjected to blast pressure. The feasibility and validity of the numerical analysis on the reponses of structural components under internal explosions are discussed in terms of structural damage assessment, and evaluated as the same damage in the analysis and the experiments.

Changes in Internal Pressure of Frozen Fruits by Freezing Methods (동결방법에 따른 냉동 과일의 내부압력 변화)

  • 정진웅;정승원;박기재
    • Food Science and Preservation
    • /
    • v.10 no.4
    • /
    • pp.459-465
    • /
    • 2003
  • This study was carried out to investigate the changes in internal pressure according to various freezing methods, as basic research to protect the destruction of tissues when fruits and vegetables are frozen. The rate of weight loss, caused by the freezing of fruits and vegetables, was found to be the least (0.44∼1.38%) when the immersion freezing method was applied. The difference in the rate of weight loss was the highest when freezing methods were applied to watermelon, and the freezing rate of watermelon whose moisture contents were greater have relatively greater influence on the weight loss. The difference in internal pressures was the least and caused by the volume increase and decrease, when pear, apple, and melon were frozen using the immersion freezing method, while the diffeyence the greatest when the air-blast freezing method was used. As the freezing rate was greater, the internal pressure was less. However, the internal pressure of strawberry and watermelon was the greatest when the immersion freezing method was applied. Frozen without using the thermal equalizing method, the change in internal pressure of fruits was about 2 psig. In contrast, the internal pressure of watermelon applied with the thermal equalizing method was changed in a way similar to that of watermelon not applied with the method, but the former generated a certain level of internal pressure and maintained a significantly low level of internal pressure (about 1.3 psig). When thawed, the internal pressure of samples to which the thermal equalizing method was applied was less than that of what the thermal equalizing method was not applied to. In comparison with the application of multi-step thermal equalizing method, 3∼4 times of application of the thermal equalizing method to the freezing resulted in the decrease of fluctuation range of internal pressure.

The Effect of Pressure and Oxidation Mole Fraction on Ablation Rate of Graphite for Nozzle Throat Insert (압력과 산화몰분율이 그라이트 목삽입재의 삭마율에 미치는 영향)

  • Hahm, Heecheol;Kang, Yoongoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.8-15
    • /
    • 2014
  • The ablation characteristics of graphite nozzle throat insert is analyzed for the use in solid rocket propulsion system. The propulsion system is composed of three types of conventional nozzles, such as De-Laval type, blast tube type, and submerged type. Various kinds of propellants are used in the thirteen kinds of propulsion system that has different shapes of each other. Total thirty seven tests are performed. From the results of the analysis, it is found that the ablation rate is higher for the higher average chamber pressure and the higher concentration of oxidizing species in combustion gas.

High Power Laser Driven Shock Compression of Metals and Its Innovative Applications (고 출력 레이저에 의한 충격파 현상 연구 및 응용)

  • Lee, Hyun-Hee;Gwak, Min-Cheol;Choi, Ji-Hee;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.832-840
    • /
    • 2008
  • Ablation occurs at irradiance beyond $10^9\;W/cm^2$ with nanosecond and short laser pulses focused onto any materials. Phenomenologically, the surface temperature is instantaneously heated past its vaporization temperature. Before the surface layer is able to vaporize, underlying material will reach its vaporization temperature. Temperature and pressure of the underlying material are raised beyond their critical values, causing the surface to explode. The pressure over the irradiated surface from the recoil of vaporized material can be as high as $10^5\;MPa$. The interaction of high power nanosecond laser with a thin metal in air has been investigated. The nanosecond pulse laser beam in atmosphere generates intensive explosions of the materials. The explosive ejection of materials make the surrounding gas compressed, which form a shock wave that travels at several thousand meters per second. To understand the laser ablation mechanism including the heating and ionization of the metal after lasing, the temporal evolution of shock waves is captured on an ICCD camera through laser flash shadowgraphy. The expansion of shock wave in atmosphere was found to agree with the Sedov's self-similar spherical blast wave solution.

Numerical Analysis on Feedback Mechanism of Supersonic Impinging Jet using LES (LES를 이용한 초음속 충돌제트의 피드백 메커니즘에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 2017
  • Steam jets ejected from a rupture zone of high energy pipes may cause damage to adjacent structures. This event could lead to more serious accidents in nuclear power plants. Therefore, to prevent serious accidents, high energy pipes of nuclear power plants are designed according to the ANSI / ANS 58.2 technical standard. However, the US Nuclear Regulatory Commission (USNRC) has recently pointed out non-conservatism in existing high energy pipe fracture evaluation methods, and required the assessment of the unsteady load of the jet caused by a potential feedback mechanism as well as the impact range of steam jet, the jet impact loads and the blast wave effects at the initial breakage stage. The potential feedback mechanism refers to a phenomenon in which a vortex formed by impingement jets amplifies vortex itself and induces jet vibration in a shear layer. In this study, CFD methodology using the LES turbulence model is established and numerical analysis is carried out to evaluate the dynamic behavior of impingement jets and the potential feedback mechanism during jet impingement. Obtained results have been compared with an empirical correlation and experiment.

Numerical Study on Laser-driven In-Tube Accelerator (LITA) Performance using a Plasma Size Modeling

  • Kim, Sukyum;Toshiro Ohtani;Akihiro Sasoh;Jeung, In-Seuck;Park, Jeong--Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.320-324
    • /
    • 2004
  • Laser Propulsion is a device that generates thrust using laser energy. Laser-driven In-Tube Accelerator (LITA) has been developed at Tohoku University. LITA is a laser propulsion system that accelerates an object not in an open air but in a tube. Experiments of vertical launching and pressure measurement on the tube wall were carried out and in order to observe the initial state of plasma and blast wave, the visualization experiment was carried out using the shadowgraph method. In this study, the time variation of pressure on the tube wall is numerically simulated solving Euler equation. In order to model the laser energy, heat source function added to the frozen flow Euler equation. Plasma size from the shadowgraph images was used for the initial condition of laser energy input. For verification of the modeling, these results were compared with the previous experimental and numerical results. From these verifications, an analysis of LITA performance will be investigated.

  • PDF

Properties of Explosion and Flame Velocity with Content Ratio in Mg-Al Alloy Particles (마그네슘합금의 조성비율에 따른 폭발 및 화염전파 특성)

  • Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.32-37
    • /
    • 2012
  • The aim of this study is to evaluate the characteristics of explosion and flame velocity that can be utilized to factories where Mg-Al alloy metal powders are handled in the form of raw materials, products or by-product for similar dust explosion prevention and mitigation. Because the strength of the blast pressure is the result due to flame propagation, flame velocity in dust explosion can be utilized as a valuable information for damage prediction. An experimental investigation was carried out on the influences of content ratio of Mg-Al alloy (mean particle size distribution of 151 to 161 ${\mu}m$). And a model of flame propagation velocity based on the time to peak pressure and flame arrival time in dust explosion pressure, assuming the constant burning velocity, leads to a representation of flame velocity during dust explosion. As the results, the maximum flame velocity of Mg-Al(60:40 wt%), Mg-Al(50:50 wt%) and Mg-Al(40:60 wt%) was estimated 15.5, 18 and 15.2 m/s respectively, and also tend to change with content ratio of Mg-Al.