• Title/Summary/Keyword: Blanking/Piercing

Search Result 34, Processing Time 0.026 seconds

An Automated Die Design System for Blanking and Piercing of Stator and Rotor Parts (스테이터 및 로터의 블랭킹 및 피어싱에 관한 자동화된 금형설게 시스템)

  • Park, J.C.;Kim, B.M.;Kim, C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.22-33
    • /
    • 1997
  • This paper describes a research work of developing a computer-aided design of blanking and piercing for stator and rotor parts. Based on knowledge-based rules, the die design system, STRTDES2, is designed by considering several factors, such as complexities of blank geometry and punch profile, and availability of press equipment and standard parts. Therefore this system can carry out a die design for each process which is obtained from the result of an automated process planning system, STRTDES1 and generate part drawing and the assembly drawing of die set in graphic forms. Knowledges for die layout are extracted from plasticity theories, relevant references and empirical know-hows of experts in blanking industries.

  • PDF

A Progressive Automated-Process Planning and Die Design and Working System for Blanking or Piercing and Bending of Sheet Metal Product (박판제품의 블랭킹 및 피어싱과 굽힘 가공을 위한 순차이송용 공정 및 금형 설계와 가공자동화 시스템)

  • Choe, Jae-Chan;Kim, Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.246-259
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design and manufacturing of irregular shaped sheet metal product for blanking or piercing and bending operations. An approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories experimental results and the empirical knowledge of field experts, This system has been written in AutoLISp on the AutoCAD and in customer tool kit on the SmartCAM with a personal computer and is composed of nine modules which are input and shape treatment, flat pattern-layout, pro-processor module. Based on the knowledge-based rules, the system is designed by considering several factors, such as material and thickness of product complexities of blank geometry and punch profile sheet metal to give flat pattern and automatically account for the adjustment of bending allowances to match tooling requirements by checking dimensions and generating NC data automatically according to drawings of die-layout module. Results carried out in each module will provide efficiencies to the designer and the manufacturer of blanking or piercing and bending die in this field.

  • PDF

An automated process planning 8 die design using expert system for blanking or piercing of irregular shaped sheet metal products (불규칙성 박판제품의 프로그래시브 다이설계를 위한 자동화된 CAD시스템)

  • Kim, J. H.;Kim, C.;Choi, J. C.;Kim, B. M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.214-218
    • /
    • 1995
  • Much labor, an exceedingly long lead time, and the skills of experienced engineers are required for press tool design. To reduce such problems, several CAD systems for blanking or piercing have been developed. This paper describes a computer-aided design for blanking or piercing of irregularly shaped sheet metal products. An approach to the system is based on knowledge base rules. The process planning & die design system is designed by considering several factors, such as complexity of blank geometry, punch profile, and availability of press equipment and standard parts. Therefore, after checking a production feasibility for irregular shaped sheet metal products, this system which is implemented strip layout module can carry out a process planning and generate the strip layout in graphic forms. Also this system implemented die layout module can carry out a die design for each process which is obtained form the result of an automated process planning and generate parts and assembly drawing of a die set.

  • PDF

A CAD/CAM System for Blanking or Piercing of Irregular Shaped-Sheet Metal Products (불규칙형상 박판제품의 블랭킹 및 피어싱용 CAD/CAM 시스템)

  • 최재찬;김철;박상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.174-182
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design and machining of irregular shaped-sheet metal product for blanking or piercing operation. An approach to the CAD/CAM system is based on the knowledge-based rules. Knowledge for the CAD/CAM system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD and in customer tool kit on the SmartCAM with a personal computer and is composed of nine modules, which are input and shape treatment, flat pattern-layout, production feasibility check, blank-layout, strip-layout, die-layout, data conversion, modelling, and post-processor module. Based on knowledge-based rules, the system is designed by considering several factors, such as material and thickness of product, complexities of blank geometry and punch profile, diameter and material of a wire, and availability of press. This system is capable of generating NC data automatically according to drawings of die-layout module. Results which are carried out in each module will provide efficiencies to the designer and the manufacturer of blanking or piercing die in this field.

  • PDF

Development of Fine Blanking Dies for Forming Small Sized Module Gear (미소 모듈기어의 Fine Blanking 성형금형 개발)

  • Kim J. S.;Shim H. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.308-315
    • /
    • 2002
  • In recent automotive industries, fine blanking technology widely used in production of components with relatively thick gauges in brake systems, seat recliner, door locks, and auto transmission systems. Due to its advantages to obtain almost final product quality using fine blanking forming process without additional finish machining processes, consequently saving the production costs. In this paper we intended to develope the small sized module gear toothed dual seat recliner sector gear(0.5mm module) for car seats using fine blanking process which needed semi piercing with computer simulation and a lot of try and errors to achieve required accuracy and geometric quality. However through the some corrections of tool geometries with tryout test, we could get successful results.

  • PDF

A nesting system for blanking or piercing of irregular-shaped sheet metal products (불규칙형상 박판제품의 블랭킹용 네스팅 시스템)

  • Choi, J.C.;Kim, B.M.;Kim, C.;Kim, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.171-179
    • /
    • 1997
  • This paper describes a nesting system of a computer-aided design of blanking and piercing for irregularly shaped sheet metal products. An approach to the system is based on knowledge-based rules. A nesting system is designed by considering several factors, such as utilization ratio which minimises the scrab for single or pairwise operation, bridge width, grain orientation and design requirements which maximise the strength of the part when subsequent bending is involve. Therefore this system which was implemented blank layout and strip layout module can carry out a nesting with a best utilization and a process planning for irregular shaped sheet metal products in single or pairwise operation and generate the blank layout and strip layout in graphic forms. Knowledges for a nesting and a process planning are extracted from plasticity theories, relevant references and empirical know-hows of experts in blanking industries. This provides its efficiency and effectiveness for nesting irregularly shaped sheet metal products.

  • PDF

An Automated Process Planning System for Blanking or Piercing of Irregular-Shaped Sheet Metal Products (ll) (불규칙한 형상의 박판제품에 관한 블랭킹 및 피어싱용 공정설계 시스템(II))

  • Choi, J.C.;Kim, B.M.;Kim, C.;Kim, J.H.;Kim, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.39-48
    • /
    • 1997
  • This paper describes the process planning system of a computer-aided design of blanking and piercing for irregularly shaped sheet metal products. An approach to the system is based on knowledge-based rules. The process planning system is designed by considering several factors, such as the complexity of blank geometry, production feasibility of products, and punch profile complexity. Therefore this system which was implemented production feasibility check and strip layout module can carry out a process planning considering a production feasibility area of both internal and external features, a dimension of blanked hole, a coner and a fillet radius for irregualrly shaped sheet metal products and generate the strip layout in graphic froms. Knowledges for process planning are extracted from plasticity theories, handbooks, relevant references and empirical know- hows of experts in blanking companies. This provides powerful capabilities for process planning system of irregularly shaped sheet metal products.

  • PDF

An integrated process planning, die design and working system for blaking and bending of sheet metal product (박판제품의 블랭킹 및 굽힘 가공을 위한 통합적 공정 및 금형설계와 가공시스템)

  • Kim, J.H.;Choi, J.C.;Kim, C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.155-159
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design and manufacturing (CAD-CAM) of irregular shaped sheet metal product for blanking or piercing and bending operation. An approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated form plasticity theories, experimental results and the empirical knowledge of field experts. This system has been written in AutoLIST on the AutoCAD and in customer tool kit on the SmartCAM with a personal computer and is composed of nine modules. the system is designed by considering several factors, such as material and thickness of product, complexities of blank geometry and punch profile, diameter and material of a wire, and availability of press. This system is capable of unfolding a formed sheet metal to give flat pattern and automatically account for the adjustment of bending allowances to match tooling requirements by checking dimensions and generating NC data automatically according to drawings of die-layout module. Results carried out in each module will provide efficiencies to the designer and the manufacture of blanking or piercing and bending die in this field.

  • PDF

An Automated Process Planning and Die Design System for Blanking of Stator and Rotor Parts (스테이터 및 로터의 블랭킹에 관한 공정설계 및 금형설계 시스템)

  • Park, J.C.;Kim, M.M.;Lee, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.40-51
    • /
    • 1996
  • This paper describes some research works of computer-aided design of blanking and piercing progressive die for stator and rotor parts. An approach to the system is based on knowledge based rules. The deveolped system is composed of six modules such as main program, input and shape treatment, production feasibility check, strip layout, die layout and drawing edit module. Using this system, design parameters ( geometric shapes, die and punch dimensions and dimensions of tool elements) are determined and output is gen- erated in graphic from. Knowledges for tool design are extracted from the plasticity theories, handbooks, relevant references and empirical know-hows of experts in blkanking companies. The developed system provides powerful capabilities for process planning and die design of stator and rotor parts.

  • PDF

A Comparative Analysis between 2D and 3D Modeling in the Piercing Process of Lead Frame and Experimental Study (리드프레임 피어싱 공정의 2D와 3D 모델링 비교해석 및 실험적 연구)

  • Bang, H.J.;Han, S.S.;Han, C.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.288-291
    • /
    • 2006
  • Piercing or blanking process is widely used to manufacture most of lead frame parts, but it is difficult to analyze the real process by the actual shape through progressive dies. In this paper several stages in progressive punching are modeled by 2D and 3D configurations using $DEFORM^{TM}$ 2D/ 3D code. During the progressive stage some state variables and deformed configurations are analyzed in each model. There are three stages in the process, the deformations at each stage are cumulative. The advantages and disadvantages of these two type modeling are discussed and analyzed. The experiments are performed as a working material copper alloy through manufactured die. Computed results in load by two types are compared to experiments.

  • PDF