• Title/Summary/Keyword: Blade-to-Blade Flow

Search Result 1,083, Processing Time 0.025 seconds

3-Dimensional Analysis for Film Cooling adjacent Injection Hole (분사구 인접영역에서의 막냉각에 관한 3차원 해석)

  • 이용덕;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2590-2600
    • /
    • 1993
  • The present paper describes numerical predictions for the film cooling effectiveness from a row of hole at various injection ratios and injection alngles.Numerical calculations were performed to investigate film cooling effectiveness and the characteristics of flow and temperature distributions in the region near the downstream of injection hole including the region of adverse pressure gradient. The elliptic 3-dimensional governing equations with variable thermal properties were solved by SIMPLE algorithm. The results showed that the presence of adverse pressure gradient in the region near the downstream of injection hole induces large temperature gradient. At injection angle of $35^{\circ}$ the average film cooling effectiveness was increased as increased of injection ratio up to 1.0. At injection angle of $90^{\circ}$ however, the average film cooling effectiveness was decreased from injection ratio larger than 0.4.

EXPERIMENT AND SIMULATION OF A WIND-DRIVEN REVERSE OSMOSIS DESALINATION SYSTEM

  • Park, Sang-Jin;Clark C.K. Liu
    • Water Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.1-17
    • /
    • 2003
  • A mathematical model was developed to simulate the performance of a prototype wind-powered reverse osmosis desalination system. The model consists of two sub-models operated in a series. The first sub-model is the wind-energy conversion sub-model, which has wind energy and feed water as its input and pressurized feed water as its output. The second sub-model is a reverse osmosis (RO) process sub-model, with pressurized feed water as its input and the flow and salinity of the product water or permeate as its output. Model coefficients were determined based on field experiments of a prototype wind powered RO desalination system of the University of Hawaii, from June to December 2001. The mathematical model developed by this study predicts the performance of wind-powered RO desalination systems under different design conditions. The system optimization is achieved using a linear programming approach. Based on the results of system optimization, a design guide is prepared, which can be used by both manufacturer and end-user of the wind-driven reverse osmosis system.

  • PDF

Study on flow characteristics in LBE-cooled main coolant pump under positive rotating condition

  • Lu, Yonggang;Wang, Zhengwei;Zhu, Rongsheng;Wang, Xiuli;Long, Yun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2720-2727
    • /
    • 2022
  • The Generation IV Lead-cooled fast reactor (LFR) take the liquid lead or lead-bismuth eutectic alloy (LBE) as the coolant of the primary cooling circuit. Combined with the natural characteristics of lead alloy and the design features of LFR, the system is the simplest and the number of equipment is the least, which reflects the inherent safety characteristics of LFR. The nuclear main coolant pump (MCP) is the only power component and the only rotating component in the primary circuit of the reactor, so the various operating characteristics of the MCP are directly related to the safety of the nuclear reactor. In this paper, various working conditions that may occur in the normal rotation (positive rotating) of the MCP and the corresponding internal flow characteristics are analyzed and studied, including the normal pump condition, the positive-flow braking condition and the negative-flow braking condition. Since the corrosiveness of LBE is proportional to the fluid velocity, the distribution of flow velocity in the pump channel will be the focus of this study. It is found that under the normal pump condition and positive-flow braking conditions, the high velocity region of the impeller domain appears at the inlet and outlet of the blade. At the same radius, the pressure surface is lower than the back surface, and with the increase of flow rate, the flow separation phenomenon is obvious, and the turbulent kinetic energy distribution in impeller and diffuser domain shows obvious near-wall property. Under the negative-flow braking condition, there is obvious flow separation in the impeller channel.

Application of the V2-F Turbulence Model for Flow Analysis of Turbomachinery (V2-F 난류 모델의 터보기계 유동 해석 적용)

  • Park, Jae Hyeon;Sohn, Dong Kyung;Kim, Chang Hyun;Baek, Je Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.75-83
    • /
    • 2016
  • Since a turbomachine has complex flow characteristics, which are caused by adverse pressure gradient and high speed motion, an elaborate turbulence model is needed to accurately predict the flow. Some turbulence models such as an algebraic or a two-equation eddy viscosity model have been used for in-house RANS-code, but it is difficult to obtain good result for several complex flows. In this study, Durbin's V2-F turbulence model, which has been known for better prediction for severe flow separation, is applied to T-Flow. It was validated for simple cases such as channel and compressor cascade, and its applicability to turbomachinery was shown by analyzing internal flow of a single rotor. As a result, the V2-F turbulence model shows better blade surface pressure distribution than the one-and-two equation turbulence model.

The Improvement of Surface Roughness of Marine Propeller by Continuous Control of Cutter Posture in 5-Axis Machining (공구자세의 연속제어를 통한 선박용 프로펠러의 5축 가공 표면조도의 개선)

  • Son, Hwang-Jin;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.27-33
    • /
    • 2012
  • A marine propeller is designed for preventing cavitation priority. Cavitation is a phenomenon which is defined as the vibration or noise by dropping the pressure on the high-speed rotation of the propeller. There has to be a enough thrust on the low-speed rotation for preventing cavitation. Thus, it has to be considered in the increasing of the number of blade and the angle of wing to design the propeller. In addition, flow resistance will be increasing by narrowing the width between blades. So high quality surface roughness of the hub to minimize flow resistance is required. Interference problems with tool and neighboring surfaces often take place from this kind of characteristics of the propeller. During 5-Axis machining of these propellers, the excessive local interference avoidance, necessary to avoid interference, leads to inconsistency of cutter posture, low quality of machined surface. Therefore, in order to increase the surface quality, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. This study, by using a MC-space algorithm for interference avoidance and a MB-spline algorithm for continuous control, is intended to create a 5-Axis machining tool path with excellent surface quality. Also, an effectiveness is confirmed through a verification manufacturing.

Modeling and experimental comparative analysis on the performance of small-scale wind turbines

  • Basta, Ehab;Ghommem, Mehdi;Romdhane, Lotfi;Abdelkefi, Abdessattar
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper deals with the design, wind tunnel testing, and performance analysis of small wind turbines targeting low-power applications. Three different small-size blade designs in terms of size, shape, and twisting angle are considered and tested. We conduct wind tunnel tests while measuring the angular speed of the rotating blades, the generated voltage, and the current under varying resistive loading and air flow conditions. An electromechanical model is also used to predict the measured voltage and power and verify their consistency and repeatability. The measurements are found in qualitative agreement with those reported in previously-published experimental works. We present a novel methodology to estimate the mechanical torque applied to the wind turbine without the deployment of a torque measuring device. This method can be used to determine the power coefficient at a given air speed, which constitutes an important performance indicator of wind turbines. The wind tunnel tests revealed the capability of the developed wind turbines to deliver more than 1225 mW when subject to an air flow with a speed of 7 m/s. The power coefficient is found ranging between 26% and 32%. This demonstrates the aerodynamic capability of the designed blades to extract power from the wind.

Effect of Heat/Mass Transfer in the turbine blade internal passage with various rib arrangement (회전하는 터빈 블레이드 이차유로내 요철 배열이 열/물질전달에 미치는 영향)

  • Lee, Sei-Young;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.22-29
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements and rotating on heat/mass transfer in the cooling passage of gas turbine blades. The cooling passage has very complex flow structure, because of the rib turbulator and rotating effect. Experiments and numerical calculation are conducted to investigate the complex flow structures and heat transfer characteristics; the numerical computation is performed using a commercial code, FLUENT ver.5, to calculate the flow structures and the experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. For the rotating duct tests, the test duct, which is the cross section of is $20mm\times40mm$ (the hydraulic diameter, $D_h$, of 26.7 mm, has two-pass with $180^{\circ}$ turning and the rectangular ribs on the wall. The rib angle of attack is $70^{\circ}$ and the maximum radius of rotation is $21.63D_h$. The partition wall has 10 mm thickness, which is 0.5 times to the channel width, and the distance between the tip of the partition wall and the outer wall of the turning region is 26.7 mm $(1D_h)$. The turning effect of duct flow makes the very complex flow structure including Dean type vortex and high turbulence, so that the heat/mass transfer increases in the turning region and at the entrance of the second pass. The Coriolis effect deflects the flow to the trailing surface, resulting in enhancement of the heat/mass transfer on the trailing surface and reduction on the leading surface in the first pass. However, the opposite phenomena are observed in the second pass. The each rib arrangement makes different secondary flow patterns. The complex heat/mass transfer characteristics are observed by the combined effects of the rib arrangements, duct rotation and flow turning.

  • PDF

Study on Optimization of Aerodynamic Design of A Jet Fan (제트송풍기의 공력설계 최적화에 관한 연구)

  • Seo, Seoung-Jin;Kim, Kwang-Yong;Chang, Dong-Wook
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.439-443
    • /
    • 2002
  • In this study, three-dimensional incompressible viscous flow analysis and optimization using response surface method are presented for the design of a jet fan. Steady, incompressible, three-dimensional Reynolds averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Sweep angles and maximum thickness of blade are used as design variables for the shape optimization of the impeller in response surface method. The experimental points which are needed to construct response surface are obtained from the D-optimal design and Full Factorial design and relations between design variables and response surface are examined.

  • PDF

A Study on the Noise Reduction of the Engine cooling Fan used an Express Bus (고속 버스용 엔진 냉각 팬의 저소음화 연구)

  • Oh, Jae-Eung;Sim, Hyoun-Jin;Lee, Jung-Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.279-284
    • /
    • 2002
  • In this study, it has been developed the program for predicting the noise spectrum of axial flow fan. The radiated acoustic pressure is expressed the discrete frequency noise peaks at BPF(Blade passage frequency) and its harmonics by Wu's method and the line spectrum at the broad band by Wright's method. And this paper presents the characteristics of a fan noise due to modify the design parameters. Accordingly, it is obtained the design parameter values for noise reduction of fan.

  • PDF

Hydrodynamic analysis of the surface-piercing propeller in unsteady open water condition using boundary element method

  • Yari, Ehsan;Ghassemi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.22-37
    • /
    • 2016
  • This article investigates numerical modeling of surface piercing propeller (SPP) in unsteady open water condition using boundary element method. The home code based on BEM has been developed for the prediction of propeller performance, unsteady ventilation pattern and cross flow effect on partially submerged propellers. To achieve accurate results and correct behavior extraction of the ventilation zone, finely mesh has generated around the propeller and especially in the situation intersection of propeller with the free surface. Hydrodynamic coefficients and ventilation pattern on key blade of SPP are calculated in the different advance coefficients. The values obtained from this numerical simulation are plotted and the results are compared with experiments data and ventilation observations. The predicted ventilated open water performances of the SPP as well as ventilation pattern are in good agreement with experimental data. Finally, the results of the BEM code/experiment comparisons are discussed.