• Title/Summary/Keyword: Blade-to-Blade Flow

Search Result 1,083, Processing Time 0.033 seconds

Unsteady Flow Characteristics of an Axial Flow Fan Installed in the Outdoor Unit of Air Conditioner (에어콘 실외기용 축류송풍기의 비정상 유동장 특성 연구)

  • Jang, Choon-Man
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.223-230
    • /
    • 2005
  • The unsteady nature of vortex structures has been investigated by a large eddy simulation (LES) in an axial flow fan with a shroud covering only the rear region of its rotor tip. The simulation shows that the tip vortex plays a major role in the structure and unsteady behavior of the vortical flow in the fan. The movements of the vortex structures induce high-pressure fluctuations on the rotor blade and in the blade passage. Frequency characteristics of the fluctuating pressure on the rotor blade are analyzed using wavelet transform. The dominant frequency of the real-time pressure selected at the high pressure fluctuation region corresponds well to that of the fluctuating rotor torque and the experimental result of fan noise. It is mainly generated due to the unsteady behavior of the vortical flow, such as the tip vortex and the leading edge separation vortex.

  • PDF

Numerical Investigation on Internal Flow Field of a Single-Stage Transonic Axial Compressor (수치해석을 활용한 1단 천음속 압축기 내부 유동장 분석)

  • Song, Ji-Han;Hwang, Oh-Sik;Park, Tae Choon;Lim, Byung-Jun;Yang, Soo-Seok;Kang, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.85-91
    • /
    • 2012
  • Numerical simulations on a single stage transonic compressor which is developed by Korea Aerospace Research Institute are carried out and their results are compared with experimental data for cross validations. Comparisons between experimental data and numerical simulation results show good agreements on a performance curve, static pressure and total pressure distributions. CFD results show that there is a clear interaction between tip leakage flow and normal shock in the rotor passage. Tip leakage flows are almost dissipated after the strong normal shock and it forms a strong recirculation near the blade tip. Also a large separation region grows on the suction surface just after the normal shock. As the pressure ratio and blade loading increase, the normal shock line moves upstream and it starts to deviate from the blade leading edge. Then the tip leakage flow does not overcome the strong adverse pressure gradient and flow blockage originated from the tip recirculation region. As a result, the tip leakage flow heads for the neighboring blade leading edge, which results in a compressor stall.

Cause of Cavitation Instabilities in Three Dimensional Inducer

  • Kang, Dong-Hyuk;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.206-214
    • /
    • 2009
  • Alternate blade cavitation, rotating cavitation and cavitation surge in rocket turbopump inducers were simulated by a three dimensional commercial CFD code. In order to clarify the cause of cavitation instabilities, the velocity disturbance caused by cavitation was obtained by subtracting the velocity vector under non-cavitating condition from that under cavitating condition. It was found that there exists a disturbance flow towards the trailing edge of the tip cavity. This flow has an axial flow component towards downstream which reduces the incidence angle to the next blade. It was found that all of the cavitation instabilities start to occur when this flow starts to interact with the leading edge of the next blade. The existence of the disturbance flow was validated by experiments.

Effect of Cut-off Angle on Flow Pattern of Centrifugal Multi-blade Fan (원심 다익홴의 유동에 대한 컷 오프 각도의 영향)

  • Kang, Kyung-Jun;Shin, You-Hwan;Lee, Yoon-Pyo;Kim, Kwang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.37-42
    • /
    • 2010
  • This study investigated on details of flow characteristics of a multi-blade fan for domestic ventilation. Experiments and analysis were carried out to describe on flow pattern with variations of cut-off angle near the scroll housing throat, which were performed by PIV measurement for the flow field and by total pressure probes. The stagnation point at cut-off region of the fan moves to the exit of the scroll housing as the cut-off angle increases. The movement of stagnation point and the variation of throat area of the scroll housing influence to the distribution of velocity magnitude at the exit of the fan. Furthermore, a large distortion of the velocity distribution at the scroll exit causes to increase mixing loss along the flow path.

Numerical study on the Performance Improvement of the Sirocco Fan in a Range Hood (레인지 후드용 시로코 홴의 성능 향상을 위한 연구)

  • Park, Sang-Tae;Choi, Young-Seok;Park, Moon-Soo;Kim, Cheol-Ho;Kwon, Oh-Myoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.572-577
    • /
    • 2004
  • This paper presents numerical study on the performance improvement of the sirocco fan in a range hood. The performance of sirocco fan means a higher flowrate, a higher static pressure and a lower required motor power in a fixed geometry constraint. Various impeller geometric parameters, such as blade profile, blade diameter, blade thickness profile and blade exit angle, were investigated by numerically and the results were compared with each other to know the effects on the performance. In this approach, the volute geometry were fixed with the original shape. The numerical results show that the blade profile with airfoil shape and small exit blade thickness increases the performance. The blade exit angle shows optimum angle within a varied range. The efficiency of the optimized exit angle was about $10\%$ higher than the base blade exit angle and the static pressure was about $28\%$ higher at the flow coefficient 0.22.

  • PDF

Stall and Counter-measure for Large Size Axial-Flow Fan (대형축류팬의 실속과 대책)

  • Shim, Eui-Bo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.70-77
    • /
    • 1998
  • The rise in pressure across the impeller blade of an axial flow fan depends on the angle of attack. At a low back pressure, the air volume will be large and the angle of attack is small. The gradual increase of the back pressure approached stall zone which is not stationary but travels blade to blade passage. In consequence, a region occurs around these blades with large vibration in the flow. To avoid these stall operation, the stall detector in the axial flow fans has been designed to detect stalling condition with a manometer or differential pressure switch by electric mechanism.

  • PDF

Dynamic Response of Blade Surface Cavitation

  • Toyoshima, Masakazu;Sakaguchi, Kimiya;Tsubouchi, Kota;Horiguchi, Hironori;Sugiyama, Kazuyasu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.160-168
    • /
    • 2016
  • In high speed turbopumps, cavitation occurs and often causes the flow instabilities such as cavitation surge and rotating cavitation. The occurrence of these cavitation instabilities is considered to relate to dynamic characteristics of the cavitation, which are modelled using a cavitation compliance and a mass flow gain factor. Various types of cavitation such as a blade surface cavitation, a tip leakage vortex cavitation, and a backflow vortex cavitation occur at the same time in the inducer and the dynamic characteristics of each cavitation have not been clarified yet in experiments. Focusing on the blade surface cavitation as one of fundamental cavitation, we investigated the dynamic characteristics of the blade surface cavitation on a flat plate hydrofoil in experiments in the present study.

Prediction of Aerodynamic Loads for NREL Phase VI Wind Turbine Blade in Yawed Condition

  • Ryu, Ki-Wahn;Kang, Seung-Hee;Seo, Yun-Ho;Lee, Wook-Ryun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2016
  • Aerodynamic loads for a horizontal axis wind turbine of the National Renewable Energy Laboratory (NREL) Phase VI rotor in yawed condition were predicted by using the blade element momentum theorem. The classical blade element momentum theorem was complemented by several aerodynamic corrections and models including the Pitt and Peters' yaw correction, Buhl's wake correction, Prandtl's tip loss model, Du and Selig's three-dimensional (3-D) stall delay model, etc. Changes of the aerodynamic loads according to the azimuth angle acting on the span-wise location of the NREL Phase VI blade were compared with the experimental data with various yaw angles and inflow speeds. The computational flow chart for the classical blade element momentum theorem was adequately modified to accurately calculate the combined functions of additional corrections and models stated above. A successive under-relaxation technique was developed and applied to prevent possible failure during the iteration process. Changes of the angle of attack according to the azimuth angle at the specified radial location of the blade were also obtained. The proposed numerical procedure was verified, and the predicted data of aerodynamic loads for the NREL Phase VI rotor bears an extremely close resemblance to those of the experimental data.

A Failure Analysis on the Broken Last Blade of 30MW Steam Turbine (30MW 증기터빈 최종단 회전익 파단 사고 분석)

  • Kim, S.B.;Kim, I.C.;Han, S.W.;Jun, C.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.5-15
    • /
    • 2007
  • In the recently released accident-investigation report on blade failure, almost 70% of blade failures was found at low pressure turbine blades, and it is well known that main cause is due to the vibration modes. This paper describes the systematic approach on the root cause of the blade failure at L 0 stage, 30MW single flow industrial steam turbine which had tripped by high vibration after ten-month commercial operation. A fracture was found at the only one damping wire hole of 59 blades, and crack was detected at three damping wire holes by NDT. According to the analysis result for the crack fracture surface and the chain of the sequential operational events, we come to the conclusion that a typical high cycle fatigue is the most dominant factor caused to the blade failure, the resonance frequency margin was narrowed by the cut damping wire and the high cycle vibration was amplified, and then the blade was broken at once by the centrifugal force when the crack reached the critical size.

  • PDF

Behavior of Tip Vortex in a Propeller Fan (프로펠러팬에서의 Tip Vortex 거동)

  • Kim, Sung-Hyup;Furukawa, Masato;Inoue, Masahiro
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1377-1382
    • /
    • 2004
  • Flow fields in a half ducted propeller fan have been investigated by three-dimensional Reynolds-averaged Navier-Stokes (RANS) simulations and a vortex core identification technique. The simulation at the design operating condition shows that the tip vortex onset point is located at 30 percent tip chord of the suction surface on the blade tip. There is no interaction between the tip vortex and the adjacent blade, so that the tip vortex smoothly convects to the rotor exit. However, the high vorticity in the tip vortex causes the wake and the tip leakage flow to be twined around the tip vortex and to interact with the pressure surface of the adjacent blade. This flow behavior corresponds well with experimental results by Laser Doppler Velocimetry. On the contrary, the simulation at the low-flowrate operating condition shows that the tip vortex onset point is located at the 60 percent tip chord of the suction surface. In contrast to the design operating condition, the tip vortex grows almost tangential direction, and impinges directly on the pressure surface of the adjacent blade.

  • PDF