• 제목/요약/키워드: Blade shape

검색결과 478건 처리시간 0.021초

헬리콥터 힌지없는 로터 시스템용 패들형 축소 복합재료 블레이드 구조 설계 및 제작 (A Structural Design and Manufacture of Paddle type Small-scaled Composite Blade for Hingeless Rotor System of Helicopter)

  • 김덕관;홍단비;이명규;주진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.220-223
    • /
    • 2002
  • This paper introduces the development procedure of paddle type small-scaled composite rotor blade for helicopter hingeless rotor system. Paddle type composite blade design was done by using CORDAS program developed by KARI and dynamic analysis for hingeless hub with blade is done by using FLIGHTLAB which is commercial software for helicopter comprehensive analysis. The procedure to manufacture complicated shape of paddle type blade tip was developed and composite blades were manufactured after establishing the effective curing method. Through this research, the development technology of composite rotor blade with complex aerodynamic shape were accumulated and these will be applied to the related research field, for example, full size composite blade development, etc.

  • PDF

프레넬 렌즈 UV 미세복제 공정에서의 전사특성에 관한 연구 (Micro-replication quality of Fresnel Lens in UV micro-replication process)

  • 임지석;이남석;김석민;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.79-82
    • /
    • 2005
  • Fresnel lens has number of applications in the optical systems because of its advantages. It is nearly flat lens that has small weight. It is conventionally used in lighthouse beacons, condensing unit of overhead projector and etc. Recently, demands of small size optical systems such as display units, information storage systems, optical detecting units had increased. Conventional manufacturing process of high quality Fresnel lens is direct machining. But it is not suitable for mass production because of high cost and long cycle time. Replication process is more suitable for mass production. But the Fresnel lens has number of sharp blade shape prism. In the replication process, this blade shape causes defects that can affect optical efficiency. In this study, replication process of blade shape pattern that has maximum height of $280{\mu}m$, aspect ratio 1.4 for Fresnel lens application.

  • PDF

터빈 블레이드 회전수 변화와 터빈 블레이드 엣지 형상 변화에 따른 표면 가스온도 분포 해석 (Numerical Study of Turbine Blade Surface Gas Temperature with Various RPM and Blade Edge Shape)

  • 이인철;변용우;구자예;이상도;김귀순;문인상;이수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.49-52
    • /
    • 2008
  • 터빈 블레이드의 엣지 형상 변화에 따른 표면 가스온도 발달과정에 대해서 전산해석을 수행하였다. Sharp형과 Round형의 터빈 블레이드를 모델링하였으며, 터빈의 회전수는 두 가지 형상 모두 0${\sim}$10,000 rpm의 회전 속도를 주어 전산해석을 실시하였다. 터빈의 회전수가 증가할수록 터빈 블레이드 표면의 평균 온도는 하강하였고, Sharp형 엣지 형상이 Round형 엣지 형상에 비해서 터빈 블레이드의 표면 온도 분포가 전반적으로 낮은 분포를 나타내었다.

  • PDF

차세대 로터 블레이드 형상정의 및 공력소음 해석

  • 이관중;황창전;주진
    • 항공우주기술
    • /
    • 제2권1호
    • /
    • pp.35-43
    • /
    • 2003
  • 본 논문에서는 차세대 로터 시스템의 핵심 기술인 고성능, 저소음 로터 블레이드 개발을 위한 로터 형상 설계 및 공력/소음 해석 결과를 정리하고 해석 기법을 소개하였다. 먼저 패들형 블레이드를 기본 모델로 베인팁 개념을 적용하여 저소음 특성을 갖는 로터 블레이드 평면형상을 결정한 후, 설계된 차세대 로터 블레이드 즉 NRSB-I의 소음특성을 해석하고 그 결과를 BERP 블레이드와 비교 검토하였다.

  • PDF

축류압축기 동익의 스윕각 최적화 (Optimization of Blade Sweep in an Axial Compressor Rotor)

  • 장춘만;;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.437-442
    • /
    • 2004
  • The optimization of a blade sweep for a transonic axial compressor rotor (NASA rotor 37) has been performed using a response surface method and a Reynolds-averaged Wavier-Stokes (RANS) flow simulation. Two shape variables of the rotor blade, which are used to define a blade sweep, are introduced to increase an adiabatic efficiency. Data points for response evaluations have been selected by D-optimal design, and linear programming method has been used for an optimization on a response surface. The result shows that the adiabatic efficiency is increased to about 1 percent compared to that of the reference shape of the rotor blade. Relatively high increasement of the adiabatic efficiency is obtained between 20 and 60 percent span. In the present study, backward swept blade is more effective to increase the adiabatic efficiency In the axial compressor rotor.

  • PDF

An efficient vibration control strategy for reliability enhancement of HAWT blade

  • Sajeer, M. Mohamed;Chakraborty, Arunasis;Das, Sourav
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.703-720
    • /
    • 2020
  • This paper investigates the safety of the wind turbine blade against excessive deformation. For this purpose, the performance of the blade in the along-wind direction is improved by longitudinal stiffener made of shape memory alloy. The rationale behind the selection of this smart material is due to its ability to offer excellent thermo-mechanical behaviour at low strain. Here, Liang-Roger model is adopted for vibration control, and the super-elastic effects are utilised for blade stiffening. Turbulent wind fields are generated at the hub height using TurbSim and the corresponding loads are evaluated using blade element momentum theory. An efficient switching algorithm is developed along with performance curves that enable the designer to select an optimal mode of heating depending upon the operational scenario. Numerical results presented in this paper clearly demonstrate the performance envelope of the proposed stiffener and its influence on the reliability of the blade.

허브면 형상의 변경을 통한 초음속 압축단의 공력효율 개선 (Improvement of Aerodynamic Efficiency of Supersonic Stage by the Modification of Hub Flowpath Shape)

  • 박기철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.227-233
    • /
    • 2002
  • It is common for highly loaded supersonic stage to have very high relative inlet Mach number. To get this level of inlet Mach number, rotor blade outer diameter or rotational speed should be increased. In the case of commercial turbo-fan engine, it is preferred to make the rotor blade outer diameter large than increasing the rotational speed. But, for multi-stage fan of military engines, overall diameter is often restricted and they are apt to increase the rotational speed. With high rotational speed, relative inlet Mach number is likely to be well supersonic over the entire rotor blade span and the characteristic of the stage is affected with meridional shape of the stage, especially at near hub or tip. In this paper, the aerodynamic performance of two different hub surface shape is compared and it's merit and demerits were discussed.

  • PDF

레인지 후드용 시로코 홴의 성능 향상을 위한 연구 (Numerical study on the Performance Improvement of the Sirocco Fan in a Range Hood)

  • 박상태;최영석;박문수;김철호;권오명
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.572-577
    • /
    • 2004
  • This paper presents numerical study on the performance improvement of the sirocco fan in a range hood. The performance of sirocco fan means a higher flowrate, a higher static pressure and a lower required motor power in a fixed geometry constraint. Various impeller geometric parameters, such as blade profile, blade diameter, blade thickness profile and blade exit angle, were investigated by numerically and the results were compared with each other to know the effects on the performance. In this approach, the volute geometry were fixed with the original shape. The numerical results show that the blade profile with airfoil shape and small exit blade thickness increases the performance. The blade exit angle shows optimum angle within a varied range. The efficiency of the optimized exit angle was about $10\%$ higher than the base blade exit angle and the static pressure was about $28\%$ higher at the flow coefficient 0.22.

  • PDF

해석적 방법을 통한 압축기의 파울링 해석 (Prediction of Compressor Fouling Using an Analytic Method)

  • 송태원;김동섭;김재환;노승탁
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.176-183
    • /
    • 2000
  • The performance of gas turbines decreases as their operating hours increase. Compressor fouling is the main reason for this time-dependent performance degradation. Airborne particles adhere to the blade surface and results in the change in the blade shape. It is difficult to exactly analyze the mechanism of the compressor fouling because the growing process of the fouling is very slow and the dimension of the fouled depth is very small compared with blade dimensions. In this study, an analytic method to predict the motion of particles and their deposition inside axial flow compressors is proposed. The analytic model takes into account the blade shape and the flow within the blade passage. Comparison of simulation result with field data shows the feasibility of the model. Influence of the particle distribution on the compressor fouling is also examined.

  • PDF

Pruning and Matching Scheme for Rotation Invariant Leaf Image Retrieval

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제2권6호
    • /
    • pp.280-298
    • /
    • 2008
  • For efficient content-based image retrieval, diverse visual features such as color, texture, and shape have been widely used. In the case of leaf images, further improvement can be achieved based on the following observations. Most plants have unique shape of leaves that consist of one or more blades. Hence, blade-based matching can be more efficient than whole shape-based matching since the number and shape of blades are very effective to filtering out dissimilar leaves. Guaranteeing rotational invariance is critical for matching accuracy. In this paper, we propose a new shape representation, indexing and matching scheme for leaf image retrieval. For leaf shape representation, we generated a distance curve that is a sequence of distances between the leaf’s center and all the contour points. For matching, we developed a blade-based matching algorithm called rotation invariant - partial dynamic time warping (RI-PDTW). To speed up the matching, we suggest two additional techniques: i) priority queue-based pruning of unnecessary blade sequences for rotational invariance, and ii) lower bound-based pruning of unnecessary partial dynamic time warping (PDTW) calculations. We implemented a prototype system on the GEMINI framework [1][2]. Using experimental results, we showed that our scheme achieves excellent performance compared to competitive schemes.