• Title/Summary/Keyword: Blade shape

Search Result 478, Processing Time 0.032 seconds

Geometrical Analysis of a Torque Converter (토크 컨버터의 형상 분석)

  • 임원석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.197-212
    • /
    • 1997
  • The performance of a torque converter can be expressed by the performance parameters such as flow radius and flow angle, on the mean flow path. The geometric analysis of the torque converter is required to determine these parameters for the modeling of the torque converter. In general, the blade shape is depicted by three dimensional data at the mid-surface of blade or those of the pressure and suction side. To generate three dimensional model of the blade using the data mentioned above, a consistent data format and a shape generation algorithm are required. This paper presents a useful consistent data format of the blades and an algorithm for the geometrical shape generation. By the geometric analysis program to which the shape generation algorithm is embedded, the variation of blade angles in rotating element analyzed. Then finally, the analyzed results of geometric profile of a blade are compared with those of the blade design principle, so called forced vortex theorem.

  • PDF

Aerodynamic Shape Optimization of the Impulse Turbine using Numerical Analysis (수치해석을 이용한 충동형 터빈의 공력형상 최적화)

  • Lee E. S.;Seol W. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.191-196
    • /
    • 2005
  • For the improvement of aerodynamic performance of the turbine blade in a turbopump for the liquid rocket engine, the optimization of turbine profile shape has been studied. The turbine in a turbopump in this study is a partial admission of impulse type, which has twelve nozzles and supersonic inflow. Due to the separated nozzles and supersonic expansion, the flow field becomes complicates and shows oblique shocks and flow separation. To increase the blade power, redesign of the blade shape using CFD and optimization method was attempted. The turbine cascade shape was represented by four design parameters. For optimization, genetic algorithm based upon non-gradient search has been selected as a optimizer. As a result, the final blade has about 4 percent more blade power than the initial shape.

  • PDF

AERODYNAMIC SHAPE OPTIMIZATION OF THE SUPERSONIC IMPULSE TURBINE USING CFD AND GENETIC ALGORITHM (CFD와 유전알고리즘을 이용한 초음속 충동형 터빈의 공력형상 최적화)

  • Lee E.S.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.54-59
    • /
    • 2005
  • For the improvement of aerodynamic performance of the turbine blade in a turbopump for the liquid rocket engine, the optimization of turbine profile shape has been studied. The turbine in a turbopump in this study is a partial admission of impulse type, which has twelve nozzles and supersonic inflow. Due to the separated nozzles and supersonic expansion, the flow field becomes complicate and shows oblique shocks and flow separation. To increase the blade power, redesign ol the blade shape using CFD and optimization methods was attempted. The turbine cascade shape was represented by four design parameters. For optimization, a genetic algorithm based upon non-gradient search hue been selected as an optimizer. As a result, the final blade has about 4 percent more blade power than the initial shape.

Dynamic behavior of smart material embedded wind turbine blade under actuated condition

  • Mani, Yuvaraja;Veeraragu, Jagadeesh;Sangameshwar, S.;Rangaswamy, Rudramoorthy
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.211-217
    • /
    • 2020
  • Vibrations of a wind turbine blade have a negative impact on its performance and result in failure of the blade, therefore an approach to effectively control vibration in turbine blades are sought by wind industry. The small domestic horizontal axis wind turbine blades induce flap wise (out-of-plane) vibration, due to varying wind speeds. These flap wise vibrations are transferred to the structure, which even causes catastrophic failure of the system. Shape memory alloys which possess physical property of variable stiffness across different phases are embedded into the composite blades for active vibration control. Previously Shape memory alloys have been used as actuators to change their angles and orientations in fighter jet blades but not used for active vibration control for wind turbine blades. In this work a GFRP blade embedded with Shape Memory Alloy (SMA) and tested for its vibrational and material damping characteristics, under martensitic and austenite conditions. The embedment portrays 47% reduction in displacement of blade, with respect to the conventional blade. An analytical model for the actuated smart blade is also proposed, which validates the harmonic response of the smart blade.

Optimization of Blade Sweep of NASA Rotor 37 (NASA Rotor 37 익형의 스윕각 최적화)

  • Jang Choon-Man;Li Ping;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.622-629
    • /
    • 2006
  • The shape optimization of blade sweep in a transonic axial compressor rotor of NASA Rotor 37 has been performed using response surface method and the three-dimensional Wavier-Stokes analysis. Two shape variables of the rotor blade, which are used to define the rotor sweep, are introduced to increase the adiabatic efficiency of the compressor. Throughout the optimization, optimal shape having a backward sweep is obtained. Adiabatic efficiency, which is the objective function of the present optimization, is successfully increased. Separation line due to the interference between a shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one. The increase in adiabatic efficiency for the optimized blade is caused by suppression of the separation due to a shock on the blade suction surface.

Aerodynamic characteristics of a vertical axis wind turbine blade (수직축 풍력터빈 블레이드의 공기역학적 특성)

  • Shin, Jee-Young;Son, Young-Seok;Cha, Duk-Guen;Lee, Cheol-Gyun;Hwang, I-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.877-884
    • /
    • 2006
  • The objective of this study is to investigate the aerodynamic characteristics of a vertical axis wind turbine blade as the basic study of a design of a vertical axis wind turbine. The lift and drag coefficients of the various shape of the vortical axis wind turbine blades are analyzed and compared using the CFD code Fluent. To validate the numerical analysis, the predicted results of the Fluent are compared with those of the Xfoil code and the experimental results. We conclude that the program Fluent can be used to predict the aerodynamics of the wind turbine blade. By comparing the predicted results of the aerodynamic characteristics of the different shape of the blades, an appropriate shape of the blade is suggested to design the vortical axis wind turbine blade.

Shape Design of Guillotined Shear Cutters for Steel Pipes (강관의 Guillotine 전단날 형상 설계)

  • Cho Haeyong;Lee Sangmin;Lee Sungkil;Kim Yongyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.105-112
    • /
    • 2005
  • The guillotined cutting process for the pipe was studied in this paper. Until now guillotining mechanism can not be practically applied in the industries because of the deformation of sheared section around cutting area, the coarse sheared surface, and the burs. To find optimum shapes of blade, several types of blade were experimentally studied. The cutting force normal to the axial direction of the pipe was compared with the theoretical result based on the cutting energy. The experimental maximum cutting forces were very good agreement with the theoretical results. It also discussed that the design parameters of guillotining system such as the blade shape and the clearance between the blade and the die made effects to the deformation of the cutting cross section area. The results show that the guillotining method can be applicable to the pipe cutting system by optimizing the blade shape and the clearance between the blade and the die of the guillotined cutting system with respect to the sheared pipe material.

Evaluation of Efficiency by Applying Different Optimization Method for Axial Compressor (최적화 방법에 따른 축류압축기의 효율평가)

  • Jang, Choon-Man;Abdus, Samad;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.543-544
    • /
    • 2006
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using three-dimensional Navier-Stokes analysis and three different surrogate models: i.e.., Response Surface Method(RSM), Kriging Method, and Radial Basis Function(RBF). Three design variables of blade sweep, lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor blade, the adiabatic efficiency is increased for the three different surrogate models. Detailed flow characteristics at the optimal blade shape obtained by different optimization method are drawn and discussed.

  • PDF

Shape Optimization of Swept, Leaned, and Skewed Blades in a Transonic Axial Compressor for Enhancing Rotor Efficiency (효율 향상을 위한 축류 압축기 동익의 스윕, 린, 스큐각의 형상 최적화)

  • Jang, Choon-Man;Samad, Abdus;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.525-532
    • /
    • 2005
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using response surface method and three-dimensional Navier-Stokes analysis. Three design variables of blade sweep. lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor. the adiabatic efficiency is increased by reducing the tub comer and tip losses. Separation line due to the interference between a passage shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one.

  • PDF

Determination of Optimum Cutter Shape for Peeling Altari Radish (알타리무 삭피용 최적 칼날형상의 구명)

  • 민영봉;김성태;강동현;정태상
    • Journal of Biosystems Engineering
    • /
    • v.28 no.5
    • /
    • pp.421-428
    • /
    • 2003
  • This study was conducted to determine the optimum blade shape for peeling Altari radish. To figure out the required peeling force according to various angles of blade and rakes of peeling cutter, two peeling tests such as circumferential peeling and longitudinal peeling of Altari radish were carried out. Based on the pretest results, which performed to investigate the applicability of the optimum shape of cutter and to find out the cutting pattern according to the lapse of days after harvesting the radish, the peeling depth and width of the blade were fixed at 2 mm and 10 mm. From two methods of circumferential and longitudinal peeling test, the angles of rake and blade as cutter shape factors were affected on peeling force. But the peeling speed was not affected on it under the safety speed as 0.2 m/s, without blade vibrating on peeling operation. The rake angle was more effective factor than the blade angle, and the optimum angles of blade and rake were 10$^{\circ}$ and 55$^{\circ}$ respectively. The cutting surface by the longitudinal peeling was more smooth than that by the circumferential peeling. There was no problem in peeling work during 4 days after harvest because the freshness of the Altari radish was maintained.