• Title/Summary/Keyword: Blade shape

Search Result 478, Processing Time 0.02 seconds

Study on the Improvement of Rotary Blade - Tilling Load Characteristic Analysis of the Three Kinds of Rotary Blade - (로타리 경운날의 개량 연구 -경운날 3종의 경운부하특성 분석 -)

  • 김수성;이여성;우종구
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.391-400
    • /
    • 1997
  • Using the soil bin systems, this study was carried out to investigate the tilling load characteristic for the three kinds of Japanese rotary blade and the possibility of common use for power tiller and tractor rotary. The results obtained from the study are summarized as follows : 1. At all tested soils. the average and maximum tilling torque of all tested blades increased as the tillage pitch did. 2. The torque requirements of newly designed and produced blade was less than that of blade which has been used on power tiller and tractor rotary. 3. The maximum tilling torque of new ONE were decreased 7%, 10~11%, 27% in comparing with another blades at clay loam, loam and sandy loam, respectively. 4. According to observation of the extent of soil adhesion on blade and the contact aspect of blade, new ONE is the most excellent of all tested rotary blades and till smoothly not to compress the untilled soil. From the results of this study. the newly developed blade(new ONE) proved to be good tilling load performance and had a conclusion that it is possible to use it on power tiller and tractor rotary in common.

  • PDF

Flutter Analysis of Multiple Blade Rows Vibrating Under Aerodynamic Coupling

  • Kubo, Ayumi;Namba, Masanobu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.6-15
    • /
    • 2008
  • This paper deals with the aeroelastic instability of vibrating multiple blade rows under aerodynamic coupling with each other. A model composed of three blade rows, e.g., rotor-stator-rotor, where blades of the two rotor cascades are simultaneously vibrating, is considered. The displacement of a blade vibrating under aerodynamic force is expanded in a modal series with the natural mode shape functions, and the modal amplitudes are treated as the generalized coordinates. The generalized mass matrix and the generalized stiffness matrix are formulated on the basis of the finite element concept. The generalized aerodynamic force on a vibrating blade consists of the component induced by the motion of the blade itself and those induced not only by vibrations of other blades of the same cascade but also vibrations of blades in another cascade. To evaluate the aerodynamic forces, the unsteady lifting surface theory for the model of three blade rows is applied. The so-called k method is applied to determine the critical flutter conditions. A numerical study has been conducted. The flutter boundaries are compared with those for a single blade row. It is shown that the effect of the aerodynamic blade row coupling substantially modifies the critical flutter conditions.

  • PDF

A Study on the Composite Blade Performance Variation by Attaching Erosion Shield for Hovercraft

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Moon, Kyung-Man;Bae, Chang-Won;Kang, Byong-Yun;Yang, Dong-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1017-1025
    • /
    • 2009
  • This study intends to study about the blade performance loss occurred due to the variation in the shape of airfoil from the attachment/non-attachment of blade erosion shield for hovercraft. This study model has used NACA 4412, has designed NACA 4412 by using Auto CAD and designed the shape that has attached an erosion shield to this model according to the thickness and length. By using these models, we have generated a grid by using GAMBIT and calculated the lift coefficient (Cl) and drag coefficient (Cd) by using the FLUENT code for flow analysis. Through this, we have calculated and compared the lift-to-drag ratio that is an indicator of airfoil performance according to the shape and attachment/non-attachment of erosion shield.

Performance Characteristics of the Double-Inlet Centrifugal Blower according to the Shape of an Impeller (임펠러 형상에 따른 양흡입 원심송풍기 성능특성)

  • Lee, Jong-Sung;Jang, Choon-Man
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • This paper presents the performance enhancement of a double-inlet centrifugal blower by the shape optimization of an impeller. Two design variables, a number of blade and a length of chord, are introduced, and analyzed by a response surface method. Three-dimensional compressible Navier-Stokes equations are used to analyze the blower performance and the internal flow of the blower. Throughout the numerical simulation of the blower, blower efficiency can be increased by reducing separation flow generating from the blade leading edge of a blade pressure surface. It is noted that recirculation flow observed inside the blade passage induces low velocity region, thus increases pressure loss. Efficiency and pressure of the optimum blower are successfully increased up to 3% and 3.9% compared to those of reference blower at the design flow condition, respectively. Detailed flow field inside the blower is also analyzed and compared.

Performance Estimation of a Tidal Turbine with Blade Deformation Using Fluid-Structure Interaction Method

  • Jo, Chul-Hee;Hwang, Su-Jin;Kim, Do-Youb;Lee, Kang-Hee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-84
    • /
    • 2015
  • The turbine is one of the most important components in the tidal current power device which can convert current flow to rotational energy. Generally, a tidal turbine has two or three blades that are subjected to hydrodynamic loads. The blades are continuously deformed by various incoming flow velocities. Depending on the velocities, blade size, and material, the deformation rates would be different that could affect the power production rate as well as turbine performance. Surely deformed blades would decrease the performance of the turbine. However, most studies of turbine performance have been carried out without considerations on the blade deformation. The power estimation and analysis should consider the deformed blade shape for accurate output power. This paper describes a fluid-structure interaction (FSI) analysis conducted using computational fluid dynamics (CFD) and the finite element method (FEM) to estimate practical turbine performance. The loss of turbine efficiency was calculated for a deformed blade that decreased by 2.2% with maximum deformation of 216mm at the blade tip. As a result of the study, principal causes of power loss induced by blade deformation were analysed and summarised in this paper.

Development of Crack Detecting Method at Steam Turbine Blade Root Finger using Ultrasonic Test (초음파탐상 검사를 이용한 증기터빈 블레이드 루트 휭거 균열 탐지기법 개발)

  • Yun, Wan-No;Kim, Jun-Sung;Kang, Myung-Soo;Kim, Duk-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.738-744
    • /
    • 2011
  • The reliability of blade root fixing section is required to endure the centrifugal force and vibration stress for the last stage blade of steam turbine in thermal power plant. Most of the domestic steam turbine last stage blades have finger type roots. The finger type blade is very complex, so the inspection had been performed only on the exposed fixing pin cross-section area due to the difficulty of inspection. But the centrifugal force and vibration stress are also applied at the blade root finger and the crack generates, so the inspection method for finger section is necessary. For the inspection of root finger, inspection points were decided by simulating ultra-sonic path with 3D modeling, curve-shape probe and fixing jig were invented, and the characteristics analysis method of ultrasonic reflection signal and defect signal disposition method were invented. This invented method was actually executed at site and prevented the blade liberation failure by detecting the cracks at the fingers. Also, the same type blades of the other turbines were inspected periodically and the reliability of the turbine increased.

Development of Submersible Axial Pump for Wastewater (폐수 처리용 수중 축류 펌프 개발)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.149-154
    • /
    • 2013
  • This study was performed to develop a high efficiency submersible axial pump for concentration wastewater treatment. To do this, we simulated the effect of some parameters such as the axial twist angle of a blade(${\beta}$), the radial twist angle of a blade(${\alpha}$) and the length of a blade (l) on pump efficiency using commercial code, ANSYS CFX and BladeGen. The results showed that the axial twist angle of a blade(${\beta}$) was the most sensible parameter on the pump efficiency. And the pump efficiency had a maximum at ${\beta}=20^{\circ}$, ${\alpha}=110^{\circ}$ and l=240 mm.

Root Cause Analysis on the Steam Turbine Blade Damage of the Combined Cycle Power Plant (복합화력발전소 증기터빈 동익 손상 원인분석)

  • Kang, M.S.;Kim, K.Y.;Yun, W.N.;Lee, W.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • The last stage blade of the low pressure steam turbine remarkably affects turbine plant performance and availability Turbine manufacturers are continuously developing the low pressure last stage blades using the latest technology in order to achieve higher reliability and improved efficiency. They tend to lengthen the last stage blade and apply shrouds at the blades to enhance turbine efficiency. The long blades increase the blade tip circumferential speed and water droplet erosion at shroud is anticipated. Parts of integral shrouds of the last stage 40 inch blades were cracked and liberated recently in a combined cycle power plant. In order to analyze the root cause of the last stage blades shroud cracks, we investigated operational history, heat balance diagram, damaged blades shape, fractured surface of damaged blades, microstructure examination and design data, etc. Root causes were analyzed as the improper material and design of the blade. Notches induced by erosion and blade shroud were failed eventually by high cycle fatigue. This paper describes the root cause analysis and countermeasures for the steam turbine last stage blade shroud cracks of the combined cycle power plant.

  • PDF

Vibration analysis of a pretwisted rotating blade with a concentrated mass (집중질량과 초기 비틀림각을 갖는 회전블레이드의 진동해석)

  • Kwak, Joo-Young;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.190-197
    • /
    • 1998
  • Equations of motions of a pretwisted rotating blade with a concentrated mass in an arbitrary position are derived. The flapwise and chordwise equations are coupled to each other due to the pretwist angle of the blade. As the angular speed, hub radius ratio, pretwist angle and concentrated mass vary, the vibration characteristics of the blade change. It is found that eigenvalue lociveering phenomena occur between two closing loci due to the pretwist angle. The effect of the pretwist angle on the critical angular speed and location of the concentrated mass on the natural frequencies are also investigated.

A Numerical Study on Slip Factor Variations in Centrifugal Compressor Impellers (원심압축기 임펠러의 미끄럼계수 변화에 관한 수치연구)

  • Oh, Jongsik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.17-23
    • /
    • 1999
  • In the present numerical analysis, investigation of the effect of blade loadings from design shape on the slip factor variation was studied. Both the Eckardt radial bladed impeller and the backswept impeller were analyzed. In addition, a new design of the blade profile was arbitrarily attempted to generate a center-loading pattern in the original backswept impeller. Three dimensional compressible Navier-Stokes flow analysis with the Baldwin-Lomax turbulence model was applied to get the numerical slip factor at each impeller exit plane using the mass-averaging technique. The numerical slip (actors are in good agreement with the experimental ones and the Wiesner's slip factors deviate further from the numerical and experimental ones in both backswept impellers. Deviation angles and meridional channel loadings are found in no relation with the trend of change of the slip factor. Blade-to-blade loadings in midspan location are, however, found to have a direct relationship, especially at the sections where maximum loadings we to be expected. That information can be utilized in establishing an improved expression for slip factors in the future.

  • PDF