• Title/Summary/Keyword: Blade angle

Search Result 601, Processing Time 0.025 seconds

Aerodynamic characteristics of a small vertical axis wind turbine with dual blade type (이중 날개 형태의 소형 수직축 풍력터빈의 공기 역학적 특성)

  • Park, Byungho;Kim, Jongsik;Lim, Jongho;Ehim, Jongbin;Lee, Seungho;Lee, Jinhyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.63.2-63.2
    • /
    • 2011
  • The objective of this study is to investigate the aerodynamic characteristics of a small vertical axis wind turbine with dual blade type. The Wind turbine with dual blade has various angle of attack. so this turbine improve starting characteristics. The various arrangement of the vertical axis wind turbine with dual blade is designed. Among them, it shows superior quality that is arranged in three rows. Among arrangement in three rows, we use general computational fluid dynamics program CFX to find out the optimal arrangement. By comparing the predicted results of the aerodynamic characteristics of the different arrangement of the blades, an appropriate arrangement of the blade is suggested to design the small wind turbine blade.

  • PDF

A Numerical Study on the Effect of Blade Shapes on the Performance of the Propeller-type Submersible Mixers (날개형상이 프로펠러형 수중믹서의 성능에 미치는 영향에 관한 수치적 연구)

  • Choi, Y. S.;Lee, J. H.;Kim, S. I.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.252-256
    • /
    • 1999
  • In this research, the performance predictions of the submersible mixer were investigated. The variation of the performance characteristics by changing the impeller design parameters were discussed through the flow calculation results by using a commercial program, FLUENT. The performance of the submersible mixers is related to the velocity diffusion profiles downstream of the impeller and also the required input motor power to mix the fluid. In this study, the various design parameters such as the number of blade, the hub and tip diameters, the impeller blade profiles and revolution speed of the blades were taken for the fixed values. The blade sweep direction, the chord length distribution along with the radius of the blade and the inlet blade angle were changed to make different testing models. The flow calculation results show the effect of the changed design parameters on the performance of the submersible mixers and also give some helpful information for designing more efficient submersible mixers.

  • PDF

A Study on Characteristics of Design Parameters for In-line Duct Fan (관류형팬의 설계변수 특성에 관한 연구)

  • Park, J.W.;Huh, J.C.;Lee, C.H.;Park, W.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.373-377
    • /
    • 2005
  • The Performance of in-line duct fan depends on the design parameters of impeller and guide vane. such as sweep back angle of impeller, the number of blades, outlet blade angle, guide vane angle etc. In this experimental study total four kinds of impellers having different sweep back angles, $90^{\circ},\;72.5^{\circ},\;55^{\circ},\;37.5^{\circ}$ with 8 guide vanes, different the number of blades, 6ea, 8ea, 10ea, 12ea, different kinds of outlet blade angles, $30^{\circ},\;45^{\circ}.\;60^{\circ}$ and different kinds of guide vane angles, $15^{\circ},\;30^{\circ},\;45^{\circ}$ were selected and their performance measured to investigate the effects of them. The results were non-dimensionalized to compare their performance.

  • PDF

Some Observations on SOIL SOIL-Failure By Linear Blade Using " Stilt" System

  • Mandang, Tinke;Nishimura, Isao
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1073-1087
    • /
    • 1993
  • Many investigations have been carried out concerning tillage tool performance, including energy requirement . Since the performance of tillage could also be evaluated through the change of soil , then it is necessary to investigate the soil cutting process and the pattern of soil failure. This study was conducted using indoor soil bin, STILT (Soil Tillage Tool Interaction) system. The result shows that the soil bin experiments could provide the clear understandings about phenomena of soil failure. The movement of sil , the successive failures was clearly visualized. The relations between the horizontal and vertical forces to the linear motion blade, the shear force on the shear plane which devides soil layer into several segments were indicated by the fluctuation/vibration of the recorded resistance and forces. The results show that the horizontal force(Fx) and vertical force (Fz) develope their frequencies as the change of velocity of blade (10, 20, 40 mm/sec) for each cutting angle (35, 45, 60 degrees). Resultant force of Fx and Fz are much influenced by the cutting angle.

  • PDF

Computation. of aero-acoustics for an airfoil blade (익렬 날개의 공력 소음 계산)

  • 김휘중;이승배;김진화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.768-773
    • /
    • 2001
  • The self-noise from blade cascade at off-design points mainly comes from separated boundary layer and vortex sheddings, and is also dependent on blade shape. If the incidence angle to the cascade increases, the stalling in blades may occur and the noise level increases significantly. The hybrid method using acoustic analogy was employed to compute the far-field noise spectra and directivity patterns from the separated vortex shedding at off-design points of the cascade of impeller. This paper is compared with the experimental data of a stationary cascade in the same conditions. The simulated result is in excellent .agreement with the measured data except th slight under-prediction near the maximum radiation angle for a dipole sound.

  • PDF

A Numerical Study on the Effects of the Design Parameters upon Fan Performance and Noise (축류홴의 설계 변수가 홴의 성능과 소음에 미치는 영향의 수치적 연구)

  • 전완호;백승조;김창준;윤홍열
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.264-269
    • /
    • 2001
  • Axial fans are widely used in household electrical appliances due to their easy usage and high flow rate for cooling capacity. At the same time, the noise generated by these fans causes one of serious problems. In order to calculate the noise of a fan, we develop the software IFD - Intranet Fans Design. With this software we can design, analysis the performance and predict the noise of fan. The prediction model, which allowed the calculation of acoustic pressure at the blade passing frequency and it's higher harmonic frequencies, has been developed by Lowson's equation. To calculate the unsteady resultant force of the blade, time-marching free-wake method is used. The objective of this study is to calculate the effects of number of blades, rotating velocity, and sweep angle on the noise of fan..

  • PDF

Effects of Blade Shape on the Dynamics of Turbo-machinery (깃 형상이 터보기계의 동특성에 미치는 영향)

  • 전상복
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.477-484
    • /
    • 1998
  • An analytical procedure on the base of the substructure synthesis and assumed modes method is developed to investigate the flexibility effect of bladed disk assembly on vibrational modes of flexible rotor system. In modeling the system, Coriolis forces, gyroscopic moments, and centrifugal stiffening effects are taken into account. The coupled vibrations between the shaft and bladed disk are then extensively investigated through the numerical simulation of simplified models, with varying the shaft rotational speed and the prewist and stagger angles of the blade. It is found that the Coriolis and inertia forces and the inertia torque, which are induced by the one nodal diameter modes of the bladed disk and vary depending upon the stagger and prewist angles, lead to the coupled motions of the shaft and the bladed disk.

  • PDF

A study for noise properties of Sirroco fan blades (시로코팬 블레이드의 소음특성연구)

  • 최한림;곽지호;송기선;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.257-263
    • /
    • 2001
  • The purpose of this study is to find the amount of contributions of each Sirroco fan parameter to noise and performance using experimental and numerical approaches. We made several fans and structures related to fan housing and fan for parameter study like inlet blade angle, outlet blade angle, inlet diameter, outlet diameter, blade shape. etc.. Numerical analysis was performed using commercial code (FANNOISE) for the part not to be possible to do experiment. Using these parameter study, We have found the way to reduce noise and improve performance of fan and had some useful data for designing low noise and high performance fan.

  • PDF

Propeller Design of Unmanned Target Drone for the Performance Improvement (무인 표적기의 성능 향상을 위한 프로펠러 설계)

  • Lee Sangmyeong;Sung Hyunggun;Roh Taeseong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.46-52
    • /
    • 2005
  • A propeller as a propulsion system has been redesigned to improve performance of a target drone. The vortex theory has been applied for the propeller design method. Design variables have been the chord length along the direction of blade radius, the change of blade radius, and the geometric angle of the blade. The existing propeller has been redesigned and modified considering engine RPM change to get the improved thrust at both low and high speeds.

Effects of Various Injection Hole Shapes and Injection Angles on the Characteristics of Turbine Blade Leading Edge Film Cooling (분사홀 형상과 분사각 변화가 터빈블레이드 선단 막냉각 특성에 미치는 영향)

  • Kim, Yun-Je;Gwon, Dong-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.933-943
    • /
    • 2001
  • Using a semi-circled blunt body model, the geometrical effects of injection hole on the turbine blade leading edge film cooling are investigated. The film cooling characteristics of two shaped holes (laterally- and streamwise-diffused holes) and three cylindrical holes with different lateral injection angles, 30°, 45°, 60°, respectively, are compared with those of cylindrical hole with no lateral injection angle experimentally and numerically. Kidney vortices, which decrease the adiabatic film cooling effectiveness, appear on downstream of the cylindrical hole with no lateral injection angle. At downstream of the two shaped holes have better film cooling characteristics than the cylindrical one. Instead of kidney vortices, single vortex appears on downstream of injection holes with lateral injection angle. The adiabatic film cooling effectiveness is symmetrically distributed along the lateral direction downstream of the cylindrical hole with no lateral injection angle. But, at downstream of the cylindrical holes with lateral injection angle, the distribution of adiabatic film cooling effectiveness in the lateral direction shows asymmetric nature and high adiabatic film cooling effectiveness regions are more widely distributed than those of the cylindrical hole with no lateral injection angle. As the blowing ratio increases, also, the effects of hole shapes and injection angles increase.