• 제목/요약/키워드: Blade aerodynamic design

검색결과 246건 처리시간 0.024초

PROPID 코드 활용 풍력발전기 블레이드 설계 및 CFD 기반 공력특성 비교분석 (Wind turbine blade design using PROPID code and comparative analysis of aerodynamic properties based on CFD)

  • 최서윤;정준희;육래형;하광태;정재호
    • 풍력에너지저널
    • /
    • 제13권3호
    • /
    • pp.5-12
    • /
    • 2022
  • A methodology of wind turbine blade design has been established with PROPID code, which is an aerodynamic blade design tool developed by UIUC. PROPID code can design and analyze a wind turbine blade in a steady state flow. The methodology of wind turbine blade design includes an initial blade concept design, airfoil selection, basic design, and detailed design steps. Inverse design and performance analysis of the 2.3 MW U113 wind turbine blade was performed to verify the wind turbine blade design methodology. The differences in calculated power between PROPID code and GH Bladed code are under 1.0% in all wind conditions. Both blade shape design and performance analysis results using PROPID code are accurate. The aerodynamic characteristics of a U113 blade were investigated by computational fluid dynamics. Separation flow was captured by a Reynolds-averaged Navier-Stokes steady flow simulation using ANSYS CFX code. The numerical aerodynamic analysis methodology was verified by comparing the analysis results through CFD with BEMT-based program GH Bladed code results. Therefore, the blade design methodology will be applied to develop a super-capacity 20 MW wind turbine blade in the future.

풍력터빈 블레이드상의 공력하중분포 해석 (Spanwise Aerodynamic Loads along the Wind Turbine Blade)

  • 이교열;유기완
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.61.2-61.2
    • /
    • 2011
  • The spanwise aerodynamic loads of the wind turbine blade are investigated numerically. The blade shape such as twist and chord length along the blade span is obtained from the procedure of aerodynamically optimal design. The rated tip speed ratio and the rated wind velocity are set to 7 and 12m/s respectively. The BEM method is applied to obtain both the aerodynamic performance of the wind turbine (Fig.1) and the spanwise aerodynamic loads along the blade span including Prandtl's tip loss factor. The maximum running power coefficient is occurred around 90% radial position from hub (Fig.2). The distributed aerodynamic loads along the blade span can be used for structure analysis.

  • PDF

풍력터빈용 날개 설계 및 공력해석에 관한 연구 (A Study on Aerodynamic Analysis and Design of Wind Turbine Blade)

  • 김정환;이영호;최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.847-852
    • /
    • 2004
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio. structure. a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method This Process is programed by delphi-language. The Program has any input values such as tip speed ratio blade length. hub length. a section of shape and max lift-to-drag ratio. The Program displays chord length and twist angle by input value and analyzes performance of the blade.

소형풍력발전기용 블레이드 공력설계 프로그램 개발 (Development of an aerodynamic design program for a small wind turbine blade)

  • 윤진용;백인수;유능수
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.40-47
    • /
    • 2013
  • An aerodynamic design tool was developed for small wind turbine blades based on the blade element momentum theory. The lift and drag coefficients of blades that are needed for aerodynamic blade design were obtained in real time from the Xfoil program developed at University of Illinois. While running, the developed tool automatically accesses the Xfoil program, runs it with proper aerodynamic and airfoil properties, and finally obtains lift and drag coefficients. The obtained aerodynamic coefficients are then used to find out optimal twist angles and chord lengths of the airfoils. The developed tool was used to design a wind turbine blade using low Reynolds number airfoils, SG6040 and SG6043 to have its maximum power coefficient at a specified tip speed ratio. The performance of the blade was verified by a commercial code well known for its prediction accuracies.

Structural Design and Analysis of Connecting Part for Vertical Wind Turbine System Blade

  • Park, Hyunbum
    • 항공우주시스템공학회지
    • /
    • 제14권2호
    • /
    • pp.44-49
    • /
    • 2020
  • This work is intended to develop a flapping-type vertical wind turbine system that will be applicable to diesel generators and wind turbine generator hybrid systems. In the aerodynamic design of the wind turbine blade, parametric studies were performed to determine an optimum aerodynamic configuration. After the aerodynamic design, the structural design of the blade was performed. The major structural components of the flapping-type wind turbine are the flapping blade, the connecting part, and the stopper. The primary focus of this work is the design and analysis of the connecting part. Structural tests were performed to evaluate the blade design, and the test results were compared with the results of the analysis.

Aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structure in yaw condition

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.1021-1040
    • /
    • 2015
  • An effective method to calculate aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structures in yaw condition is proposed. By a case study on a 5 MW large wind turbine, the finite element model of the wind turbine tower-blade coupled structure is established to obtain the modal information. The harmonic superposition method and modified blade-element momentum theory are used to calculate aerodynamic loads in yaw condition, in which the wind shear, tower shadow, tower-blade modal and aerodynamic interactions, and rotational effects are fully taken into account. The mode superposition method is used to calculate kinetic equation of wind turbine tower-blade coupled structure in time domain. The induced velocity and dynamic loads are updated through iterative loop, and the aeroelastic responses of large wind turbine tower-blade coupled system are then obtained. For completeness, the yaw effect and aeroelastic effect on aerodynamic loads and wind-induced responses are discussed in detail based on the calculating results.

수평축 풍력터빈 블레이드의 공력해석 및 설계에 관한 연구 (A Study on Design of Wind Turbine Blade and Aerodynamic Analysis)

  • 김정환;김범석;윤수한;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.631-638
    • /
    • 2003
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio, structure, a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method. This process is programed by delphi-language. The program has any input values such as tip speed ratio, blade length, hub length, a section of shape and max lift-to-drag ratio. The program displays chord length and twist angle by input value and analyzes performance of the blade.

  • PDF

수직축 풍력터빈 블레이드의 공기역학적 특성 (Aerodynamic characteristics of a vertical axis wind turbine blade)

  • 신지영;손영석;차득근;이철균;황이철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권8호
    • /
    • pp.877-884
    • /
    • 2006
  • The objective of this study is to investigate the aerodynamic characteristics of a vertical axis wind turbine blade as the basic study of a design of a vertical axis wind turbine. The lift and drag coefficients of the various shape of the vortical axis wind turbine blades are analyzed and compared using the CFD code Fluent. To validate the numerical analysis, the predicted results of the Fluent are compared with those of the Xfoil code and the experimental results. We conclude that the program Fluent can be used to predict the aerodynamics of the wind turbine blade. By comparing the predicted results of the aerodynamic characteristics of the different shape of the blades, an appropriate shape of the blade is suggested to design the vortical axis wind turbine blade.

고속 터보프롭 항공기용 고효율 경량화 복합재 프로펠러 블레이드 설계 연구 (Design on High Efficiency and Light Composite Propeller Blade of High Speed Turboprop Aircraft)

  • 공창덕;이경선;박현범;최원
    • 한국추진공학회지
    • /
    • 제16권3호
    • /
    • pp.57-68
    • /
    • 2012
  • 본 연구에서는 한국의 차세대 중형항공기에 사용될 고속형 터보프롭 항공기용 고효율 복합재 프로펠러 블레이드의 설계를 수행하였다. 와류 이론과 블레이드 깃 요소 이론을 활용하여 기본 공력설계 및 성능 해석을 수행하였고 공력설계 결과는 상업용 전산유체해석 프로그램인 ANSYS를 이용한 해석을 통해 확인 되었다. 프로펠러 구조 설계 시 카본/에폭시 복합재료가 적용되었으며, 경량화와 구조 안정성 개선을 위하여 스킨-스파-폼 샌드위치 구조 형식를 채택하였다. 제안된 프로펠러 블레이드는 공력 및 구조 해석과 시제품 프로펠러 블레이드의 구조 시험을 통하여 높은 효율과 안전한 구조임이 검토되었다.

중형항공기급 고효율 경량화 복합재 프로펠러 블레이드 설계 연구 (Design on High Efficiency and Light Composite Propeller Blade of Regional Aircraft)

  • 공창덕;이경선;박현범;최원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.253-258
    • /
    • 2012
  • 본 연구에서는 한국의 차세대 중형항공기에 사용될 터보프롭 항공기용 고효율 복합재 프로펠러 블레이드의 설계를 수행하였다. 와류 이론과 블레이드 깃 요소 이론을 활용하여 기본 공력설계 및 성능 해석을 수행하였고 공력설계 결과는 상업용 전산유체해석 프로그램인 ANSYS를 이용한 해석을 통해 확인하였다. 프로펠러 구조 설계 시 카본/에폭시 복합재료가 적용되었으며, 경량화와 구조 안정성 개선을 위하여 스킨-스파-폼 샌드위치 구조 형식를 채택하였다. 제안된 프로펠러 블레이드는 공력 및 구조 해석과 시제품 프로펠러 블레이드의 구조 시험을 통하여 높은 효율과 안전한 구조임이 검토되었다.

  • PDF