• 제목/요약/키워드: Blade Velocity

검색결과 438건 처리시간 0.022초

초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어 (Vibration Control of Rotating Composite Thin-Walled Pretwisted Beam with Non-uniform Cross Section)

  • 임성남;나성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.944-949
    • /
    • 2003
  • This paper addresses the control of free and dynamic response of composite rotating pretwisted blade modeled as non-uniform thin-walled beam fixed at the certain presetting and pretwisted angle and incorporating piezoelectric induced damping capabilities. A distributed piezoelectric actuator pair is used to suppress the vibrations caused by external disturbances. The blade model incorporates non-uniform features such as transverse shear, secondary warping and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration and dynamic characteristics of the blade are highlighted.

  • PDF

PIV 계측에 의한 산업용 송풍기 익의 유동특성 (Flow Characteristics for Blade of Industiral Axial Blower by PIV Measurement Method)

  • 김진구;윤석범
    • 태양에너지
    • /
    • 제19권3호
    • /
    • pp.115-123
    • /
    • 1999
  • An experimental study was carried out to investigate the flow characteristics of a stationary blade for six kinds of measuring angles of attack, $0^{\circ},\;10^{\circ},\;20^{\circ}\;and\;30^{\circ}$ at Reynolds number of $5.8{\times}10^4$. Instant simultaneous velocity vectors around blade were measured by 2-D PIV system where laser-based illumination and two-frame grey-level cross correlation algorithm were adopted. Velocity profiles show uniform approaching flow from the straightening equipment, and experimental results reveal that separation phenomena occur and the separation point moves upstream with increasing angle of attack.

  • PDF

전산유체역학을 통한 PAV의 로터 블레이드 축간거리에 따른 호버링 성능 변화 연구 (A Study on Hovering Performance of Personal Air Vehicle According to Distance between Rotor Blade Axis via Computational Fluid Dynamics)

  • 윤재현;노우승;도재혁
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.53-60
    • /
    • 2022
  • In this study, the conceptual design and performance evaluation of a personal air vehicle (PAV) is presented, which is a potential futuristic individual transportation. The blade element theory (BET) is employed to compute a rotational velocity. A computational fluid dynamics (CFD) simulation is performed to investigate the difference in the thrust performance in the rotor axis distance of a quad-copter PAV in hovering. Modal analysis is performed to create a Campbell diagram to investigate critical speed. Consequently, a quad-copter PAV changes the aerodynamics thrust and critical velocity according to the rotor axis distance.

Review on tidal stream energy and blade designs for tropical site conditions and a look at Philippines' future prospects

  • Mark Anthony Rotor;Hamid Hefazi;Nelson Enano, Jr.
    • Ocean Systems Engineering
    • /
    • 제13권3호
    • /
    • pp.247-268
    • /
    • 2023
  • Tidal stream energy extraction remains a site-specific resource due to the "first generation" criteria requiring high-velocity tidal streams. Most studies on tidal energy and turbine blade design heavily focus on installation sites with higher velocity conditions that are non-existent in tropical countries such as the Philippines. To shorten this gap, this review paper tackles tidal turbine design considerations for low-energetic regions such as the tropics. In-depth discussions of operating principles, methods of analysis, and designs of tidal turbine blades are presented. Notable tidal stream projects around the world are also mentioned in the paper. Also, it provides a perspective on the potential of this renewable energy to produce electricity for various sites in the Philippines. Finally, the paper emphasizes the need for new tidal turbine blade designs to be viable in tropical regions, such as the Philippines.

Vortex Features in a Half-ducted Axial Fan with Large Bellmouth (Effect of Tip Clearance)

  • Shiomi, Norimasa;Kinoue, Yoichi;Setoguchi, Toshiaki;Kaneko, Kenji
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권3호
    • /
    • pp.307-316
    • /
    • 2011
  • In order to clarify the features of tip leakage vortex near blade tip region in a half-ducted axial fan with large bellmouth, the experimental investigation was carried out using a 2-dimensional LDV system. Three sizes of tip clearance (TC) were tested: those sizes were 1mm (0.55% of blade chord length at blade tip), 2mm (1.11% of blade chord length at blade tip) and 4mm (2.22% of blade chord length at blade tip), and those were shown as TC=1mm, TC=2mm and TC=4mm, respectively. Fan characteristic tests and the velocity field measurements were done for each TC. Pressure - flow-rate characteristics and two-dimensional velocity vector maps were shown. The vortex trace and the vortex intensity distribution were also illustrated. As a result, a large difference on the pressure - flow-rate characteristics did not exist for three tip clearance sizes. In case of TC=4mm, the tip leakage vortex was outflow to downstream of rotor was not confirmed at the small and reference flow-rate conditions. Only at the large flow-rate condition, its outflow to downstream of rotor existed. In case of TC=2mm, overall vortex behaviors were almost the same ones in case of TC=4mm. However, the vortex trace inclined toward more tangential direction. In case of TC=1mm, the clear vortex was not observed for all flow-rate conditions.

A Study on Rotary Weeding Blade Installation Angle for Reduction of Hand Vibration in Working Type Cultivator

  • Kwon, Tae Hyeong;Kim, Joonyong;Lee, Chungu;Kang, Tae Gyoung;Lee, Byeong-Mo;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • 제39권1호
    • /
    • pp.11-20
    • /
    • 2014
  • Purpose: Walking type cultivator used for weeding generated excessive handle vibration as well as bouncing motion depending on the weeding speed. This research was conducted to define a design factor of the rotary weeding blades for reducing soil reaction forces as well as hand vibration. Methods: The motion and forces acting on the rotary blades were reviewed to find out the most influencing parameter on hand vibration. The installation angle (IA) of the blade was selected and analyzed to determine the condition of no reaction force less. For removing the unnecessary upward soil reaction, the design factor theory of weeding blade was suggested based on geometrics and dynamics. For evaluation of design factor theory, the experiment in situ was performed base on ISO 5349:1. The vibration $a_{hv}$ and theoretical value $X_{MF}$ were compared with two groups that one was positive group ($X_{MF}$ > 0) and the other was negative group ($X_{MF}$ < 0). Results: $X_{MF}$ was derived from rotational velocity, forward velocity, disk diameter, weeding depth, blade's width and IA of blade. Two groups had significant difference (p < 0.05). In aspect of the group mean total exposure duration, positive group was 17.53% bigger than negative group. When disk radius 100, 150 and 200 mm, minimum IAs were $4{\sim}27^{\circ}$, $3{\sim}15^{\circ}$ and $2{\sim}10^{\circ}$, respectively. A spread sheet program which calculated XMF was developed by Excel 2013. Conclusions: According to this result, minimum IA of weeding blade for soil reaction reduction could be obtained. For reduction hand-arm vibration and power consumption, minimum IA is needed.

An experimental investigation into cavitation behaviour and pressure characteristics of alternative blade sections for propellers

  • Korkut, Emin;Atlar, Mehmet;Wang, Dazheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권1호
    • /
    • pp.81-100
    • /
    • 2013
  • During the final quarter of the last century considerable efforts have been spent to reduce the hull pressure fluctuations caused by unsteady propeller cavitation. This has resulted in further changes in propeller design characteristics including increased skew, tip unloading and introduction of "New Blade Sections" (NBS) designed on the basis of the so-called Eppler code. An experimental study was carried out to investigate flow characteristics of alternative two-dimensional (2-D) blade sections of rectangular planform, one of which was the New Blade Section (NBS) developed in Newcastle University and other was based on the well-known National Advisory Committee for Aeronautics (NACA) section. The experiments comprised the cavitation observations and the measurements of the local velocity distribution around the blade sections by using a 2-D Laser Doppler Anemometry (LDA) system. Analysis of the cavitation tests demonstrated that the two blade sections presented very similar bucket shapes with virtually no width at the bottom but relatively favourable buckets arms at the suction and pressure sides for the NACA section. Similarly, pressure analysis of the sections displayed a slightly larger value for the NBS pressure peak. The comparative overall pressure distributions around the sections suggested that the NBS might be more susceptible to cavitation than the NACA section. This can be closely related to the fundamental shape of the NBS with very fine leading edge. Therefore a further investigation into the modification of the leading edge should be considered to improve the cavitation behaviour of the NBS.

전동화된 스피드 스프레이어의 블레이드 형상에 따른 송풍구 유동 특성 분석 (Analysis of the Flow Characteristics for the Blower According to the Blade Shape of the Electrified Speed Sprayer)

  • 오승훈;심재록;서현규
    • 한국분무공학회지
    • /
    • 제28권1호
    • /
    • pp.16-23
    • /
    • 2023
  • The objective of this numerical study is to investigate the effect of the shape and material of the blower blade for the electrified speed sprayer on the blowing performance. The shape of the blade was changed to the bonding angle, the number of blades, the width of the blade, and the blade length based on the existing model. In order to obtain the reliability of the numerical model, the analysis of the grid dependence was performed in the numerical analysis. The numerical analysis results were compared and analyzed in terms of the agricultural chemical penetration length characteristics, flow uniformity characteristics, and velocity distribution characteristics. Furthermore, the effect of material change on weight reduction and structural characteristics was also compared and analyzed. As a result of the analysis, it was found that the optimal condition was that the blade angle was 45°, the number of blades was 12, and the width was 115 mm, which was confirmed through a comparison of the inlet mass flow rate. As a result of the equivalent stress lower than the yield strength due to the material change from aluminum to steel compared to the existing steel, structural defects do not appear, and it is judged that the operation time compared to the battery capacity will be improved through the weight reduction of the blade.

Modeling and Vibration Feedback Control of Rotating Tapered Composite Thin-Walled Blade

  • Shim, Jae-Kyung;Sungsoo Na
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.380-390
    • /
    • 2003
  • This paper addresses the problem of the modeling and vibration control of tapered rotating blade modeled as thin-walled beams and incorporating damping capabilities. The blade model incorporates non-classical features such as anisotropy, transverse shear, secondary warping and includes the centrifugal and Coriolis force fields. For the rotating blade system, a thorough validation and assessment. of a number of non-classical features including the taper characteristics is accomplished. The damping capabilities are provided by a system of piezoactuators bonded or embedded into the structure and spread over the entire span of the beam. Based on the converse piezoelectric effect, the piezoactuators produce a localized strain field in response to a voltage and consequently, a change of the dynamic response characteristics is induced. A velocity feedback control law relating the piezoelectrically induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and thebeneficial effects upon the closed-loop dynamic characteristics of the blade are highlighted.

후류장에 의한 가스터빈 회전익 통로내 비정상 유동의 수치해석적 연구 (A Numerical Analysis of Unsteady Flow in a Rotor Blade Passage by Wake Passing)

  • 김윤제;전용렬
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.233-239
    • /
    • 1998
  • The effects of unsteady flow on gas turbine, particularly on a rotor blade surface are numerically investigated. The unsteady flow in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid flow approach, and solved by the Euler equations using a time accurate marching scheme, Numerical results show that for the case of $P_s/ P_r= 1.5$, the velocity and pressure distribution on the blade surfaces have much more complex profiles than those of $P_s/ P_r= 1.0$.

  • PDF