• Title/Summary/Keyword: Blade Velocity

Search Result 439, Processing Time 0.024 seconds

Aerodynamic Design of the Axial Fan (축류 송퐁기의 공력학적 설계)

  • Sohn, Sang-Bum;Joo, Won-Gu;Cho, Kang-Rae;Nam, Hyung-Baik;Yoon, In-Kyu;Nam, Leem-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.64-69
    • /
    • 1998
  • In this study, a preliminary design method of the axial fan was systematically established based on the two-dimensional cascade theory. Flow deviation, lift coefficient, distribution of velocity and pressure coefficient on blade surfaces were predicted by an inviscid theory of Martensen method, which was also applied to select an airfoil of required performance in the present design process. The aerodynamic performance of designed blades can be predicted quickly and reasonably by using the through-flow calculation method in the preliminary design process. It would be recommendable to adopt three-dimensional viscous flow calculation at the final design refinement stage.

  • PDF

Three-Dimensional Flow Characteristics in a Linear Turbine Cascade Passage (선형 터빈 케스케이드 통로에서의 3차원 유동 특성)

  • 차봉준;이상우;이대성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3148-3165
    • /
    • 1993
  • A cascade wind tunnel test for a turbine nozzle, which was designed for a small turbo jet engine in a previous study, has been conducted to evaluate its aerodynamic performance and losses. The large-scale blades were based on the mid-span profile of the nozzle. Oil film flow structure, and then 3-dimensional velocity components were measured in the flow passage with a 5-hold pressure probe, in addition to turbulent intensities at mid-span of cascade exit using a hot-wire anemometer. From this study, 3-dimensional growth of horseshoe and passage vortices in the downstream direction was clearly understood with near-wall flow phenomena. In addition, secondary flow and losses associated with the blade configuration were obtained in detail.

Numerical Analysis of Flows on H-S and B-B Flow Surfaces in Axial-Flow Tubomachine (軸流터어보機械 의 H-S面 과 B-B面상 의 流動 의 數値解析)

  • 조강래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.153-160
    • /
    • 1983
  • The flows in an axial flow turbomachine are calculated numerically in the two sets of flow surfaces of H-S and B-B surfaces assuming that the flow is axisymmetric. The calculation is performed by regarding the governing equations as the quasi-Poisson's equations and using the finite element method for the flow regions divided into triangular elements. The results of numerical calculation agree comparatively well with the experimental results and it has been found that the distribution of an axial velocity component at the rotor exit is not necessarily uniform under the influences of the inlet guide vanes and the front shape of the hub even if the rotor is designed by the free-vortex theory. Also it has been found that the existence of the optimum value of the blade number can be estimated from the results of calculation of deviation angles at rotor exit if we consider the viscous flow-loss, and that the flows of B-B surfaces are affected very sensitively by the degree of satisfaction of Kutta condition.

CFD Performance analysis of Micro Tubular-type hydro turbine by blade shape (블레이드 형상 변화에 따른 마이크로 튜블러 수차의 CFD 성능해석)

  • Park, Ji-Hoon;Hwang, Young-Cheol;Mo, Jang-Oh;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.206.1-206.1
    • /
    • 2011
  • Recently, various developments in the area of small hydropower have being made and small hydro turbines are suitable for domestic use because it is a clean and renewable energy source. A small hydropower generator produces power by using the different water pressure levels in pipe lines and energy which was initially wasted by use of a reducing valve at the end of the pipeline is instead collected by a tubular-type hydro turbine in the generator. In this study, in order to acquire the performance of tubular-type hydro turbine applied, the output power, head, efficiency characteristics due to the different guide vane and runner vane angle are examined in detail. Moreover, influences of pressure and velocity distributions with the variation of guide vane and runner vane angle on turbine performance are investigated by using a commercial CFD code.

  • PDF

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익형의 열전달에 미치는 영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1061-1064
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

Performance Characteristics of an Axial Flow Fan According to the Shape of a Hub Cap (허브 캡 형상에 따른 축류송풍기 성능특성)

  • Jang, Choon-Man;Choi, Seung-Man;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.9-16
    • /
    • 2006
  • Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis as well as experiment. Two kinds of hub-cap, rounded and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. Numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flow angle. Large recirculation flow upstream the fan rotor for the right-angled hub-cap induces a negative incidence, thus invokes separated flow on the blade surfaces and deteriorates the performance of fan rotor.

Influence of Reynolds Number and Scale on Performance Evaluation of Lift-type Vertical Axis Wind Turbine by Scale-model Wind Tunnel Tests

  • Tanino, Tadakazu;Nakao, Shinichiro;Miyaguni, Takeshi;Takahashi, Kazunobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.229-234
    • /
    • 2011
  • For Lift-type Vertical Axis Wind Turbine (VAWT), it is difficult to evaluate the performance through the scale-model wind tunnel tests, because of the scale effect relating to Reynolds number. However, it is beneficial to figure out the critical value of Reynolds number or minimum size of the Lift-type VAWT, when designing this type of micro wind turbine. Therefore, in this study, the performance of several scale-models of Lift-type VAWT (Reynolds number : $1.5{\times}10^4$ to $4.6{\times}10^4$) was investigated. As a result, the Reynolds number effect depends on the blade chord rather than the inlet velocity. In addition, there was a transition point of the Reynolds number to change the dominant driving force from Drag to Lift.

Development of a Water Droplet Erosion Model for Large Steam Turbine Blades

  • Lee, Byeong-Eun;Riu, Kap-Jong;Shin, Se-Hyun;Kwon, Soon-Bum
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.114-121
    • /
    • 2003
  • Water droplet erosion is one of major concerns in the design of modern large fossil steam turbines because it causes serious operational problems such as performance degradation and reduction of service life. A new erosion model has been developed in the present study for the prediction of water droplet erosion of rotor blades operated in wet steam conditions. The major four erosion parameter : impact velocity, impacting droplet flow rate, droplet size and hardness of target are involved in the model so that it can also be used for engineering purpose at the design stage of rotor blades. Comparison of the predicted erosion rate with the measured data obtained from the practical steam turbine operated for more than 90,000 hours shows good agreement.

Analysis of the Sir Flow due to the Number of Electric Fan Blades (선풍기의 날개 수에 따른 공기 유동해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.107-112
    • /
    • 2012
  • Air flow and its pressure at electric fan according to three, four and five blades are analyzed in this study. As the number of blades increases at the same condition of specification, air tends to converge and becomes natural wind but higher power is consumed. And the velocity of wind is decreased as the space between winds becomes narrow. The turbulent flow is happened in the center of the body of revolution and the kinetic energy becomes largest in case of three blades. The pressure is decreased than atmospheric pressure from fan to outlet. As the number of blades increases, the pressure drop becomes smaller and is smallest in case of the fan with three blades. As the study result, The electric fan with three blades is thought to be effective in view of power consumption and design.

A Study on the Impeller Design of a Submerged Cryogenic Pump (초저온 산업용 액중펌프 임펠러 설계에 관한 연구)

  • Kweon, Byung Soo;Lee, Chi-Woo;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.136-141
    • /
    • 2016
  • The purpose of this study is to examine the basic design of a submerged cryogenic pump, which is a two stage impeller pump. We limited this study to the impeller design of the submerged pump. We calculated its velocity triangle based on the impeller blade configuration and, in order to check its natural frequency, we carried out a modal test using a finite element method (FEM) analysis. Basically, modal test results had quite similar to FEM analysis.