• Title/Summary/Keyword: Blade Velocity

Search Result 438, Processing Time 0.026 seconds

A Study on the Flow Characteristics of Mixer by Impeller Types (임펠러 형상에 따른 교반기의 유동특성에 관한 연구)

  • 양창조;최민선;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.899-905
    • /
    • 2003
  • Mixers are used in several industrial applications where it is necessary to strongly mix reactants in a short period of time (eg. reaction injection molding, ceramics manufacturing, crystallization). However, despite their widespread use, mixing flow characteristics in these systems have not been rigorously investigated. Influence of blade shapes on the mixing time and the power consumption per unit volume in two kinds of impeller including the mixing effects are studied by PIV experiment. A series of the experiments were carried out to achieve a better mixing effect in simple baffle arrangement and tall vessel with modified impellers(two kinds of blades : pitched blade turbine and rushton turbine). Results show that periodic vortex from the mixing layer is predominant and related unsteady flow characteristics prevail over the entire region.

Performance Prediction of Centrifugal Compressor Impellers using Quasi-Three-Dimensional Analysis (준삼차원 방법에 의한 원심 압축기의 성능예측)

  • Ahn, S.J.;Oh, H.W.;Kim, K.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.628-633
    • /
    • 2001
  • This paper presents analysis of the flows through three different types of radial compressor by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant.

  • PDF

Aerodynamic Load Analysis for Wind Turbine Blade in Uniform Flow and Ground Shear Flow (균일 흐름과 지상 전단 흐름에 놓인 수평축 풍력터빈 블레이드의 공력 하중 비교)

  • Kim, Jin;Ryu, Ki-Wahn
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.387-390
    • /
    • 2007
  • Recently the diameter of the 5MW wind turbine reaches 126m, and the tower height is nearly the same with the wind turbine diameter. The blade will experience periodic inflow oscillation due to blade rotation inside the ground shear flow region, that is, the inflow velocity is maximum at uppermost position and minimum at lowermost position. In this study we compare the aerodynamic data between two inflow conditions, i.e, uniform flow and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially My at hub and $F_x$, $M_y$, $M_z$ at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue load analysis.

  • PDF

Study on HAT Current Generation Rotor (수평축 해류발전 로터의 설계와 성능해석)

  • 조철희;김경수;민경훈;양태열;이현상
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.58-63
    • /
    • 2002
  • In this research, a design guideline of current generating HAT rotor and acceptable field rotor in offshore environment is proposed. To design HAT rotor model, wind mill rotor design principles and turbine theories were applied based on a field HAT rotor experimental data. To verify the compatibility of the rotor design method and to analyze the properties of design factors, 3 rotor models were designed and experimented in a circular water channel. Three rotor models were designed according to different blade numbers and blade shapes. By changing flow velocity, rotor rpm, the rotor power and efficiency were measured and the properties of rotor were estimated. The results can be effectively applied to the design of current generation rotor.

Numerical Evaluation of Flow and Performance of Turbo Pump Inducers

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.481-490
    • /
    • 2004
  • Steady state flow calculations are executed for turbo-pump inducers of modern design to validate the performance of Tascflow code. Hydrodynamic performance of inducers is evaluated and structure of the passage flow and leading edge recirculation are also investigated. Calculated results show good coincidence with experimental data of static pressure performance and velocity profiles over the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main sources of pressure loss. Amount of pressure loss from the upstream to the leading edge corresponds to that of whole pressure loss through the blade passage. The viscous loss is considerably large due to the strong secondary flow. There appears more stronger leading edge recirculation for the backswept inducer, and this increases the pressure loss. However, blade loading near the leading edge is considerably reduced and cavitation inception delayed.

An experimental study for reduction of B.P.F. noise level of multi-blade fan (다익 송풍기의 이산 주파수 소음 저감을 위한 실험적 연구)

  • 김영찬;이상환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.167-175
    • /
    • 1999
  • B.P.F.(Blade Passing Frequency) levels were measured with the cut-off clearance changes. The velocity inside the scroll, pressure fluctuation at cut-off region, and the scroll surface pressure distribution along the scroll from the cut-off to outlet were measured. With a certain cut-off clearance the improvement of efficiency and attenuation of B.P.F. noise level could be achieved. The measured results of pressure fluctuation and scroll surface pressure distribution showed that the secondary flow inside the scroll increased B.P.F. noise level at the cut-off region as the cut-off clearance got wide.

  • PDF

Effect of Incidence Angle on the Turbulence Structure in the Wake of a Turbine Rotor Blade (입사각이 터빈 동익 후류의 난류구조에 미치는 영향)

  • Chang, Sung-Il;Lee, Sang-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.55-62
    • /
    • 2003
  • This paper describes the effect of the incidence angle on the turbulence structure in the wake of a turbine rotor blade at the low inlet free-stream turbulence level. For three incidence angles of -5, 0 and 5 degrees, mid-span energy spectrum as well as mid-span profiles of mean velocity magnitude and turbulence intensity are reported at three downstream locations in the wake. Vortex shedding frequencies are obtained from the energy spectrum. The result shows that as the incidence angle changes from-5 to 5 degrees, the boundary layer on the suction surface tends to be thickened, which results in widening of the wake. Strouhal numbers based on the shedding frequencies have a nearly constant value of 0.3, independent of tested incidence angles.

  • PDF

Study on the Surface Coating of CrN for Erosion in Liquid water Drop Test

  • Kwon, Sik-Chol;Baek, W-S;Lee, S-H;Kim, K-H;Kim, H-H
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.63-63
    • /
    • 2001
  • As a new approach to substitute for a hard alloy of stellite 6B containing Co which is radioactive in nuclear system, a hard-phase coating of CrN will be applicable to protect 12Cr steel from erosion at leading edge on steam turbine blade. The CrN coating was prepared by arc ion plating on 12 Cr steel and was undertaken in liquid impact test at the velocity of 35Om/sec, which simulate the environment in the last stage of blade. The erosion resistance of coating was evaluated by optical observation on damaged surface. The threshold number of impact was closely related with surface hardness. And thus, it was confirmed that surface hardening improves the life time of steam turbine blade.

  • PDF

Three dimensional Kinematic Analysis of Sweep Shot in Ice Hockey (아이스하키 스위프 샷(Sweep shot) 동작의 3차원 운동학적 분석)

  • Choi, Ji-Young;Moon, Gon-Sung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.49-59
    • /
    • 2006
  • The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle according to sweep shot in ice hockey. The subjects of this study were five professional ice hockey players. The reflective makers were attached on anatomical boundary line of body. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and ice hockey stick were defined. 1. In three dimensional linear velocity of blade the Y axis showed maximum linear velocity almost impact, the X axis(horizontal direction) and the Z axis(vertical direction) maximum linear velocity of blade did not show at impact but after impact this will resulted influence upon hitting puck. 2. The resultant linear velocity of each segment of right arm showed maximum resultant linear velocity at impact. It could be suggest that the right arm swing patterns is kind of push-like movement. therefore the upper arm is the most important role in the right arm swing. 3. The three dimensional anatomical angular displacement of trunk in flexion-extension showed flexion all around the wrist shot. The angular displacement of trunk in internal-external rotation showed internal rotation angle at the backswing top and and increased the angle after the impact. while there is no significant adduction-abduction. 4. The three dimensional anatomical angular displacement of trunk showed most important role in wrist shot. and is follwed by shoulder joints, in addition the movement of elbow/wrist joints showed least to the shot. this study result showed upperlimb of left is more important role than upperlimb of right.

A study on the output characteristic of the wind turbine related to the wind velocity (풍속에 따른 풍력발전기의 출력특성에 관한 연구)

  • Choi, Jang-Kyun;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1185-1186
    • /
    • 2006
  • The wind turbines of various designs have been manufactured and operated for many years. The design considering the wind circumstance is required for the high efficient wind turbine, because the efficiency and characteristics of the wind turbines depends on the designs and structure of it's system. In this paper, a analysis on the output characteristic of the wind turbine according to wind velocity was performed. The results of the analysis data is desired to be used on the high efficient blade design.

  • PDF