• Title/Summary/Keyword: Blade Velocity

Search Result 438, Processing Time 0.023 seconds

Design Method for the Darrieus Type Wind Turbine (다리우스형 풍력블레이드의 설계 방법)

  • Lee, Jang-Ho;Du, Lian
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1465-1469
    • /
    • 2009
  • Darrieus wind turbine blade is one of the vertical wind power system in which the lift of blade is used. In the calculation of wind power for the type of that, the multiple streamtubes method is known as an effective method. But it has big difference in the region of higher tip speed ratio because the incoming air velocity is used in the calculation of lift. The incoming air velocity is reduced from inlet to outlet continually by transferring energy to the wind blade. In this study, the air velocity on the blade, which is called blade velocity, is obtained with newly developed algorithm and used to determine the lift. And it is verified that applying blade velocity on the lift calculation cause the power prediction to improve dramatically in the region of higher tip speed ratio.

  • PDF

Correction and Experimental Verification of Velocity Circulation in a Double-blade Pump Impeller Outlet

  • Kai, Wang;Qiong, Liu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.311-317
    • /
    • 2015
  • It is difficulty to calculate velocity circulation in centrifugal pump impeller outlet accurately. Velocity circulations of a double-blade pump impeller outlet were calculated with Stodola formula, Weisner formula and Stechkin formula. Simultaneously, the internal flow of impeller for the double-blade pump were measured with PIV technology and average velocity circulations at the 0.8, 1.0 and 1.2 times of design flow were obtained. All the experimental values were compared with the above calculation values at the three conditions. The results show that calculation values of velocity circulations with Weisner formula is close to the experimental values. On the basis of the above, velocity circulations of impeller outlet were corrected. The results of experimental verification show that the corrected calculation errors, whose maximum error is 3.65%, are greatly reduced than the uncorrected calculation errors. The research results could provide good references for establishment of theoretical head and multi-condition hydraulic optimization of double-blade pumps.

Prediction of Velocity of Shot Ball with Blade Shapes based on Discrete Element Analysis (이산요소해석에 기초한 블레이드 형상에 따른 숏볼의 투사속도 예측)

  • Kim, Tae-Hyung;Lee, Seung-Ho;Jung, Chan-Gi
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.844-851
    • /
    • 2018
  • In this study, the regression equation was suggested to predict of the shot ball velocity according to blade shapes based on discrete element (DE) analysis. First, the flat type blade DE model was used in the analysis, the validity of the DE model was verified by giving that the velocity of the shot ball almost equal to the theoretical one. Next, the DE analyses for curved and combined blade models was accomplished, and their analytical velocities of shot ball were compared with the theoretical one. The velocity of combined blade model was greatest. From this, the regression equation for velocity of shot ball according to the blade shape based on the DE analysis was derived. Additionally, the wind speed measurement experiment was carried out, and the experimental result and analytical one were the same. Ultimately, it was confirmed that the prediction method of the velocity of shot ball based on DE analysis was effective.

3-D Velocity Fields Measurements of Propeller Wake Using a Stereoscopic PIV (Stereoscopic PIV기법을 이용한 프로펠러 후류의 3차원 속도장 측정)

  • Paik Bu-Geun;Lee Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.185-188
    • /
    • 2002
  • The objective of present paper is to apply a stereoscopic PIV(Particle Image Velocimetry) techiique for measuring the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. It is essential to measure 3-components velocity fields for the investigation of complicated near-wake behind the propeller. The out-of-plane velocity component was measured using the particle images captured by two CCD cameras in the angular displacement configuration.400 instantaneous velocity fields were measured for each of few different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}\;and\;54^{\circ}$. They were ensemble averaged to investigate the spatial evolution of the propeller wake in the region ranged from the trailing edge to the region of one propeller diameter(D) downstream. The phase-averaged velocity fields show the viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were formed periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component has large values at the tip and trailing votices. With going downstream, the axial turbulence intensity and the strength of tip vortices were decreased due to the visous dissipation, turbulence diffusion and blade-to-blade interaction. The blade wake traveling at higher speed with respect to the tip vortex overtakes and interacts with tip vortices formed from the previous blade. Tip vortices are separated from the wake and show oscillating trajectory

  • PDF

Development of the Small Size Wind Blade Optimized for Korean Wind (한국형 소형 풍력 블레이드 개발에 관한 연구)

  • Lee, Jang-Ho;Chang, Se-Myong;Kim, Sang-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.286-289
    • /
    • 2006
  • To get the better efficiency in Korean type wind characteristics, a new wind turbine blade was developed with some structural, vibrational, and aero-elastic analysis for the design of the full-scale blade. A series of full domestic technology from design to manufacturing was created and used in the middle of the development of nelv wind blade. And it was equipped and measured at the wind test side in the Jeju island. After test, it is verified that the blade has the regular capacity of 10kW at the air velocity of 10m/s. And it shows better capacity in the low air-velocity compared to the imported blade. therefore it can be made by only domestic technology, and used for the domestic wind distribution with the better power generation.

  • PDF

Effect of Vortex Generator in Intake Pipe on the Moisture Concentration Distributions and Combustion Performance in a CI Engine (흡기관내 와류생성기가 압축착화엔진의 수분 농도 분포 및 연소성능 향상에 미치는 영향)

  • Jeong, Seok Hoon;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.169-174
    • /
    • 2018
  • In this work, optimization of blade shape for the improvement of mixture formation and vortex of intake port was performed by numerically, and the combustion performance of CI engine with optimized blade shape was investigated. To achieve this, 3 types of blade shape were studied under the different air flow mass conditions and the numerical results were investigated in terms of humidification water, moisture concentration, and velocity distributions. Evaporated liquid mass was also compared under various test conditions to reveal the turbulent intensity in an intake port. It was observed that the optimized blade shape can improve the humidification water, moisture concentration, and velocity distributions of intake port inside. The evaporated liquid mass was also increased under the conditions with blade. Especially, low NOx emissions was observed with optimized blade condition.

Speed Control of a Wind Turbine System Based on Pitch Control (피치제어형 풍력발전시스템의 속도제어)

  • Lim, Jong-Hwan;Huh, Jong-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.109-116
    • /
    • 2001
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is a nonlinear function of wind speed, angular velocity, and pitch angle of the blade. The design of the controller, in general, is performed by linearizing the torque in the vicinity of the operating point assuming the angular velocity of the blade is constant. For speed control, however the angular velocity is on longer a constant, so that linearization of the torque in terms of wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the nonlinear torque model of the blade. This paper also suggests a method of designing a hydraulic control system for changing the pitch angle of the blade.

  • PDF

Characteristics of Rotor Blade Tip Vortices with Spanwise Slots (스팬방향 슬롯을 가지는 회전익 끝와류의 특성)

  • Chung, Woon-Jin;Han, Yong-Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1343-1350
    • /
    • 2000
  • The evolutionary structure of tip vortices has been investigated with a two-dimensional LDV system for a plain and a slotted blade, respectively. To analyze the effect of slots which bypasses a part of main stream into the tip face, velocity profiles, vortex sizes, their displacements and turbulence intensities during one revolution of the rotor were measured by the phase averaging process. For the comparison of circumferential velocity components of the plain blade and the slotted blade, the peak values of the slotted blade were lower than those of the plain blade, and axial velocity components of the slotted blade were considerably larger than those of the plain blade. The slotted rotor blade enlarged the core size and made the vortex delayed compared with those of the plain blade at the same wake ages. Turbulence profiles had peaks inside the core radii and decayed gradually in the radial direction of vortex coordinate. Also, using a quasi 3-D LDV measurement technique the budget of turbulence kinetic energy was analyzed in radial direction of the vortex core.

Structural Safety Evaluation by Analysis of Pressure Variation Characteristics of Small Hydro Power Hydraulic Turbine Blades in Sewage Treatment Plant (하수처리장 소수력 수차 블레이드의 압력변화 특성 분석을 통한 구조안전성 평가)

  • Park, Yoo-Sin;Kim, Ki-Jung;Youn, Byong-Don
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.126-131
    • /
    • 2017
  • Numerical analysis using commercial CFD code was carried out to develop the drag force type vertical axis hydraulic turbine for the improvement of the production efficiency of small hydro energy at low flow velocity condition. Blade pressure changes and internal flows were analyzed according to the presence or absence of the hydraulic turbine blade holes at flow velocity of less than 1.0~3.0 m/s. According to the numerical results, the pressure and flow velocity is severly affected by the flow velocity in turbine blade with no holes, while the influence of flow velocity is comparatively decreased in turbine blade with holes. It is also found that the pressure and flow velocity on the blade surface with holes are evenly distributed with no singular location and it is believed that forming a hole in the blade may be helpful in terms of structural safety.

Flow Characteristics of Centrifugal Impeller Exit under Rotating Stall (선회실속하의 원심 임펠러 출구 유동 특성)

  • Shin, You-Hwan;Kim, Kwang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.5-12
    • /
    • 1999
  • This study presents the measured unsteady flctuation of impeller discharge flow for a centrifugal compressor in an unstable operating region. The characteristics of the blade-to-blade flow at rotating stall onset were investigated by measuring unsteady velocity fluctuations at several different diffuser axial distances using a hot wire anemometer. The flow characteristics in terms of the radial and tangential velocity components and the flow angle distribution at the impeller exit were analyzed using phase-locked ensemble averaging techniques. As a result, increase or decrease of the radial velocity component during the rotating stall is dominated by that of the suction side. The radial velocity distributions show the opposite trends in the regions where the radial velocity during rotating stall onset increases and decreases.

  • PDF