• Title/Summary/Keyword: Blade Steel(블레이드재)

Search Result 4, Processing Time 0.009 seconds

Reliability Estimation of Steam Turbine Blade Using First Order Reliability Method (FORM을 이용한 증기 터빈블레이드의 신뢰성 평가)

  • 황진호;김철수;김정규
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.199-204
    • /
    • 2002
  • 본 연구에서는 저압 증기 터빈블레이드의 안전성 확보를 위하여 작용응력 및 강도의 변동성을 고려한 확률론적 해석을 수행하였다. 정상상태에서 작용응력은 이론 및 유한요소해석에 의해서 얻을 수 있으며, 최대 von-Mises 응력은 215.4MPa이다. 회전굽힘 하중하에서의 피로한도는 응력비 R= -1에서 계단식 시험법을 이용하여 구하였으며, 이의 확률론적 특성에 가장 적합한 분포는 3 모수 와이블 분포이다. 그리고 신뢰성에 미치는 다양한 인자들의 영향은 영향계수(sensitivity factor)를 이용하여 정량적으로 평가하였다.

  • PDF

Study for Fracture in the Last Stage Blade of a Low Pressure Turbine (화력발전용 저압터빈 최종 단 블레이드에 대한 파손 연구)

  • Lee, Gil Jae;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.423-428
    • /
    • 2016
  • The last stage blades of a low pressure (LP) turbine get frequently fractured because of stress corrosion cracking. This is because they operate in a severe corrosive environment that is caused by the impurities dissolved in condensed steam and high stress due to high speed rotation. To improve the reliability of the blades under severe conditions, 12% Cr martensitic stainless steel, having excellent corrosion resistance and higher strength, is widely used as the blade material. This paper shows the result of root cause analysis on a blade which got fractured suddenly during normal operation. Testing of mechanical properties and microstructure examination were performed on the fractured blade and on a blade in sound condition. The results of testing of mechanical properties of the fractured blade showed that the hardness were higher but impact energy were lower, and were not meeting the criteria as per the material certificate specification. This result showed that the fractured blade became embrittled. The branch-type crack was found to have propagated through the grain boundary and components of chloride and sulfur were detected on the fractured surface. Based on these results, the root cause of fracture was confirmed to be stress corrosion cracking.

Structural Design of a 750kW Composite Wind Turbine Blade (750kW급 풍력발전기용 복합재 블레이드의 구조설계)

  • Jung C.K.;Park S.H.;Han K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.18-21
    • /
    • 2004
  • A GFRP based composite blade was developed for a 750kW wind energy conversion system of type class I. The blade sectional geometry was designed to have a general shell-spar structure. The load cases specified in the IEC61400-1 international specification were considered. For withstanding all relevant extreme loads, the structural analysis for the complete blade was performed using a commercial FEM code. The static load carrying capacity, buckling stability, blade tip deflection and natural frequencies at various rotational speeds were evaluated to satisfy the strength requirements in accordance with the IEC61400-1 and GL Regulations. For designing a lightweight blade, the thickness and the lay-up pattern of the skin-foam sandwich structures were optimized iteratively using the DOT program T-bolts were used for joining the blade root and the hub, which were modeled using a 3D FE volume model. In order to confirm the safety of the root connection, the static stresses of the thick root laminate and the steel. bolts were predicted by taking account of the bolt pretension and the root bending moments. The calculated stresses were compared with the material strengths.

  • PDF

A Stochastic Analysis in Steam Turbine Blade Steel Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 증기 터빈블레이드재의 확률론적 해석)

  • Kim, Chul-Su;Jung, Hwa-Young;Kang, Myung-Su;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2421-2428
    • /
    • 2002
  • In this study, the failure probability of the degraded LP turbine blade steel was performed using the Monte Carlo simulation to apply variation of applied stress and strength. For this purpose, applied stress under the service condition of steady state was obtained by theoretical stress analysis and the maximum Von-Mises stress was 219MPa. The fatigue strength under rotating-bending load was evaluated by the staircase method. Furthermore, 3-parameter Weibull distribution was found to be most appropriate among assumed distributions when the probabilistic distributions of tensile and fatigue strength were determined by the proposed analysis. The failure probability with various loading conditions was derived from the strength-stress interference model and the characteristic factor of safety was also estimated.