• Title/Summary/Keyword: Blade Clearance

Search Result 117, Processing Time 0.027 seconds

Effects of Inducer Tip Clearance on the Suction Performance of a Pump for Turbopumps (인듀서 익단간극이 터보펌프용 펌프의 흡입성능에 미치는 영향)

  • Choi, Chang-Ho;Kim, Dae-Jin;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.41-45
    • /
    • 2012
  • The effects of inducer tip clearance on the suction performance of a pump for turbopumps are investigated. Experiments for the pump with inducer tip clearances of 1.8% and 1.4% of blade height were performed. The experimental results showed that the suction performance of the pump increased as the tip clearance decreased. It seems that the suction performance of the pump becomes better with smaller tip clearances because the strength of the inducer backflow becomes weak with the decreased tip clearance.

Evaluation of Tip Leakage Loss and Reduction of Efficiency of Axial Turbomachinery Using Numerical Calculation (수치계산에 의한 축류터보기계의 회전차 익말단의 누설손실과 효율저하에 대한 평가)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.73-80
    • /
    • 1999
  • Leakage vortices formed new blade tip causes an increase of total pressure loss near the casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of the tip clearance. In this study, the three-dimensional flowfields in an axial flow rotor were calculated by varying the tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and attack angle on the leakage vortex and overall performance, and the loss distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss by tip clearance were evaluated using numerical results and approximate equations were presented to evaluate the reduction of rotor efficiency by tip leakage flow.

  • PDF

Tip Clearance Losses - A Physical Based Scaling Method

  • Pelz, Peter F.;Karstadt, Sascha
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.279-284
    • /
    • 2010
  • Tip clearance losses occur in every turbomachine. To estimate the losses in efficiency it is important to understand the mechanism of this secondary flow. Tip clearance losses are mainly caused by a spiral vortex formed on the suction side of the blade of a turbomachine, which induces a drag and also has an influence on the incident flow of the blades. In this paper a physical based scaling method is developed out of an analytical ansatz for the tip clearance losses. This scaling method is validated by measurements on an axial fan with five different tip clearances.

Numerical simulation Analysis of Tip Clearance Flow in a Centrifugal Compressor

  • Zhou, Shuiqing;Wang, Jun;Wang, Chuanghua;Li, Ye
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • In order to research the relationship between the tip clearance and leakage flow of centrifugal compressor, a high speed centrifugal compressor was investigated by using CFD. A numerical study on the effect of four different rotor tip clearance sizes of centrifugal compressor, which were 0.5times, 1 times, 1.5times and 2.0times of the design tip clearance, was carried out. Efficiency and pressure ratio curves were obtained under different mass flow. The reasons of the clearance vortex and the factors of vortex size were analyzed. The result indicated that with the increase of tip clearance size, the performance of the compressor changed obviously, the performance parameters such as efficiency and pressure ratio tended to decrease obviously. While, the leakage flow does not always lead to leak vortex. The strength of the vortex increased with the tip clearance. The size of leak vortex was affected by the pressure difference between the suction side and the pressure side of blade tip.

Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (II) - Blade Surface - (입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (II) - 블레이드 표면 -)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the surface of the rotating turbine blade with various incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with the mean tip clearance of 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. At design condition, the inlet Reynolds number is $Re_c=1.5{\times}10^5$ which results in the blade rotation speed of 255.8 rpm. Also, the effect of off-design condition is examined with various incidence angles between $-15^{\circ}$ and $+7{\circ}$. The results indicated that the incidence angle has significant effects on the blade surface heat transfer. In mid-span region, the laminar separation region on the pressure side is reduced and the laminar flow region on the suction side shrinks with increasing incidence angle. Near the tip, the effect of tip leakage flow increases in span wise and axial directions as the incidence angle decreases because the tip leakage flow is formed near the suction side surface. However, the effect of tip leakage flow is reduced with positive incidence angle.

The Development of High Wind Velocity/High Drying Time Hair Dryer using Computational Fluid Dynamics Analysis Method (전산유체역학(CFD) 분석법을 이용한 High Wind Velocity/High Drying Time 헤어드라이어의 개발)

  • Park, Soo-Hong;Park, Jong-Chan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.262-267
    • /
    • 2016
  • This paper describes a design of a hair drier to improve its performance. the performance of the hair drier can be improved by increasing the wind velocity of its discharge port. the design of the hair drier is accomplished by using the CFD. the validity of design results were verified by comparison with the dry change of the hair drier. In this paper, the initial condition of the applied hair drier is as follows, the number of the blade is 9, the diameter of the suction port is 40[mm], the tip clearance is 12.5[mm], the con angle is $28.5^{\circ}$ and the fan angle is 27.5R. From design results, the enhanced condition of the hair drier can be obtained as follows, the number of the blade is 3, the diameter of the suction port is 50[mm], the tip clearance is 10.5[mm], the con angle is $21.5^{\circ}$ and the fan angle is 75R. At the enhanced condition of the hair drier, the wind velocity of the hair drier is 29[%] increase, and the dry time is 40[%] increase compare to the initial condition of the hair drier.

Flow Field Analysis of a Centrifugal Fan (원심형 팬의 유동해석에 관한 연구)

  • Im, Jongsoo;Kim, Changseong;Shin, Dongshin;Rho, Ohyun;Lee, Soogab
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.105-114
    • /
    • 1998
  • Flow field and near-field noise of a centrifugal fan has been studied with an efrcient compressible method and STAR-CD. The flow field of the centrifugal fan is assumed two-dimensional. Most of the compressible studies has been done by inviscid solver because viscous simulation shows little difference. The near field noise is estimated in term s of sound pressure level in frequency domain transformed from the computed pressure fluctuations using FFT. The simulation has been done on various design elements such as impeller blade shapes, the number of blades and cut-off clearance. The comparison shows that the number of blades has a significant effect on near-field noise without losing aerodynamic performance.

  • PDF

Off-Design Performance Prediction of an Axial Flow Compressor Stage Using Simple Loss Correlations (간단한 손실모델을 이용한 단단축류압축기 탈설계점 성능예측)

  • 김병남;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3357-3368
    • /
    • 1994
  • Total pressure losses required to calculate the total-to-total efficiency are estimated by integrating empirical loss coefficients of four loss mechanisms along the mean-line of blades as follows; blade profile loss, secondary flow loss, end wall loss and tip clearance loss. The off-design points are obtained on the basis of Howell's off-design performance of a compressor cascade. Also, inlet-outlet air angles and camber angle are obtained from semi-empirical relations of transonic airfoils' minimum loss incidence and deviation angles. And nominal point is replaced by the design point. It is concluded that relatively simple loss models and Howell's off-design data permit us to calculate the off-design performance with satisfactory accuracy. And this method can be easily extended for off-design performance prediction of multi-stage compressors.

CFD Study on Particle Effect and Erosion in the Axial Compressor Blades and Shroud of Turbomachinery

  • Yoon J.S.;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.233-234
    • /
    • 2003
  • Fly ash enters axial compressor when a turbomachinery is operated in an adverse environment. We have numerically investigated erosion of the blade and shroud in the turbulent compressor passage flow under the influence of gas-particle two-phase interaction. There have appeared quasi-three dimensional calculations on this subject but not the complete three-dimensional gas-particle interaction as done in the present work. Lagrangian particle tracing technique is used on the base of parallel processing for efficient calculation. Accuracy of the present code is tested using the benchmark lPL nozzle. In the DFVLR compressor blades, we have shown that a large number of particles passing through the tip clearance make impact on the blade tip and on the shroud. Higher degree of erosion is resulted by the heavier particles due to the centrifugal force.

  • PDF

Computational Study on Particle Effect and Erosion in the Axial Compressor Blades and Shroud

  • Yoon J.S.;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.203-204
    • /
    • 2003
  • Fly ash enters axial compressor when a turbomachinery is operated in an adverse environment. We have numerically investigated erosion of the blade and shroud in the turbulent compressor passage flow under the influence of gas-particle two-phase interaction. There have appeared quasi-three dimensional calculations on this subject but not the complete three-dimensional gas-particle interaction as done in the present work. Lagrangian particle tracing technique is used on the base of parallel processing for efficient calculation. Accuracy of the present code is tested using the benchmark JPL nozzle. In the DFVLR compressor blades, we have shown that a large number of particles passing through the tip clearance make impact on the blade tip and on the shroud. Higher degree of erosion is resulted by the heavier particles due to the centrifugal force.

  • PDF