• Title/Summary/Keyword: Bladder dose

Search Result 159, Processing Time 0.026 seconds

Comparison of Doses According to Change of Bladder Volume in Treatment of Prostate Cancer (전립선암 치료 시 방광의 용적 변화에 따른 선량의 비교 평가)

  • Kwon, Kyung-Tae;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.415-421
    • /
    • 2017
  • In the case of radiation therapy for prostate cancer, a balloon infused with a certain amount of air through the anus is used to reduce rectal dose. Because of the reason, radiation therapy for prostate cancer has acquired CBCT for daily image induction. In order to maintain the anatomical structure most similar to the first CT taken before treatment, it is pretreated, but it can not be said to be perfectly consistent. In two actual treatment regimens, the volume of the bladder was measured as 45.82 cc and 63.43 cc, and the equivalent diameter was 4.4 cm and 4.9 cm. As a result of this study, the mean volume of the bladder was estimated to be 56.2 cc, 105.6 cc by 20 CBCT. The mean dose of CBCT was 1.74% and the mean Bladder mean dose was 96.67%. In case B, PTV mean dose was 4.31%, Bladder mean Dose was estimated to be 97.35%. The changes in the volume of the bladder resulted in changes in the dose of PTV and bladder. The correlation coefficient of bladder dose according to the change of bladder volume showed linearity of mean dose $R^2=-0.94$. The correlation coefficient of the PTV dose according to the volume change of the bladder showed linearity of mean dose $R^2=0.04$. It was found that the dose change of PTV was larger than that of bladder according to the change of bladder volume.

CT Based 3-Dimensional Treatment Planning of Intracavitary Brachytherapy for Cancer of the Cervix : Comparison between Dose-Volume Histograms and ICRU Point Doses to the Rectum and Bladder

  • Hashim, Natasha;Jamalludin, Zulaikha;Ung, Ngie Min;Ho, Gwo Fuang;Malik, Rozita Abdul;Ee Phua, Vincent Chee
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5259-5264
    • /
    • 2014
  • Background: CT based brachytherapy allows 3-dimensional (3D) assessment of organs at risk (OAR) doses with dose volume histograms (DVHs). The purpose of this study was to compare computed tomography (CT) based volumetric calculations and International Commission on Radiation Units and Measurements (ICRU) reference-point estimates of radiation doses to the bladder and rectum in patients with carcinoma of the cervix treated with high-dose-rate (HDR) intracavitary brachytherapy (ICBT). Materials and Methods: Between March 2011 and May 2012, 20 patients were treated with 55 fractions of brachytherapy using tandem and ovoids and underwent post-implant CT scans. The external beam radiotherapy (EBRT) dose was 48.6Gy in 27 fractions. HDR brachytherapy was delivered to a dose of 21 Gy in three fractions. The ICRU bladder and rectum point doses along with 4 additional rectal points were recorded. The maximum dose ($D_{Max}$) to rectum was the highest recorded dose at one of these five points. Using the HDRplus 2.6 brachyhtherapy treatment planning system, the bladder and rectum were retrospectively contoured on the 55 CT datasets. The DVHs for rectum and bladder were calculated and the minimum doses to the highest irradiated 2cc area of rectum and bladder were recorded ($D_{2cc}$) for all individual fractions. The mean $D_{2cc}$ of rectum was compared to the means of ICRU rectal point and rectal $D_{Max}$ using the Student's t-test. The mean $D_{2cc}$ of bladder was compared with the mean ICRU bladder point using the same statistical test. The total dose, combining EBRT and HDR brachytherapy, were biologically normalized to the conventional 2 Gy/fraction using the linear-quadratic model. (${\alpha}/{\beta}$ value of 10 Gy for target, 3 Gy for organs at risk). Results: The total prescribed dose was $77.5Gy{\alpha}/{\beta}10$. The mean dose to the rectum was $4.58{\pm}1.22Gy$ for $D_{2cc}$, $3.76{\pm}0.65Gy$ at $D_{ICRU}$ and $4.75{\pm}1.01Gy$ at $D_{Max}$. The mean rectal $D_{2cc}$ dose differed significantly from the mean dose calculated at the ICRU reference point (p<0.005); the mean difference was 0.82 Gy (0.48-1.19Gy). The mean EQD2 was $68.52{\pm}7.24Gy_{{\alpha}/{\beta}3}$ for $D_{2cc}$, $61.71{\pm}2.77Gy_{{\alpha}/{\beta}3}$ at $D_{ICRU}$ and $69.24{\pm}6.02Gy_{{\alpha}/{\beta}3}$ at $D_{Max}$. The mean ratio of $D_{2cc}$ rectum to $D_{ICRU}$ rectum was 1.25 and the mean ratio of $D_{2cc}$ rectum to $D_{Max}$ rectum was 0.98 for all individual fractions. The mean dose to the bladder was $6.00{\pm}1.90Gy$ for $D_{2cc}$ and $5.10{\pm}2.03Gy$ at $D_{ICRU}$. However, the mean $D_{2cc}$ dose did not differ significantly from the mean dose calculated at the ICRU reference point (p=0.307); the mean difference was 0.90 Gy (0.49-1.25Gy). The mean EQD2 was $81.85{\pm}13.03Gy_{{\alpha}/{\beta}3}$ for $D_{2cc}$ and $74.11{\pm}19.39Gy_{{\alpha}/{\beta}3}$ at $D_{ICRU}$. The mean ratio of $D_{2cc}$ bladder to $D_{ICRU}$ bladder was 1.24. In the majority of applications, the maximum dose point was not the ICRU point. On average, the rectum received 77% and bladder received 92% of the prescribed dose. Conclusions: OARs doses assessed by DVH criteria were higher than ICRU point doses. Our data suggest that the estimated dose to the ICRU bladder point may be a reasonable surrogate for the $D_{2cc}$ and rectal $D_{Max}$ for $D_{2cc}$. However, the dose to the ICRU rectal point does not appear to be a reasonable surrogate for the $D_{2cc}$.

Interfraction variation and dosimetric changes during image-guided radiation therapy in prostate cancer patients

  • Fuchs, Frederik;Habl, Gregor;Devecka, Michal;Kampfer, Severin;Combs, Stephanie E.;Kessel, Kerstin A.
    • Radiation Oncology Journal
    • /
    • v.37 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • Purpose: The aim of this study was to identify volume changes and dose variations of rectum and bladder during radiation therapy in prostate cancer (PC) patients. Materials and Methods: We analyzed 20 patients with PC treated with helical tomotherapy. Daily image guidance was performed. We re-contoured the entire bladder and rectum including its contents as well as the organ walls on megavoltage computed tomography once a week. Dose variations were analyzed by means of Dmedian, Dmean, Dmax, V10 to V75, as well as the organs at risk (OAR) volume. Further, we investigated the correlation between volume changes and changes in Dmean of OAR. Results: During treatment, the rectal volume ranged from 62% to 223% of its initial volume, the bladder volume from 22% to 375%. The average Dmean ranged from 87% to 118% for the rectum and 58% to 160% for the bladder. The Pearson correlation coefficients between volume changes and corresponding changes in Dmean were -0.82 for the bladder and 0.52 for the rectum. The comparison of the dose wall histogram (DWH) and the dose volume histogram (DVH) showed that the DVH underestimates the percentage of the rectal and bladder volume exposed to the high dose region. Conclusion: Relevant variations in the volume of OAR and corresponding dose variations can be observed. For the bladder, an increase in the volume generally leads to lower doses; for the rectum, the correlation is weaker. Having demonstrated remarkable differences in the dose distribution of the DWH and the DVH, the use of DWHs should be considered.

Dose comparison between prescription methods according to anatomical variations in intracavitary brachytherapy for cervical cancer

  • Choi, Euncheol;Kim, Jae Ho;Kim, Ok Bae;Byun, Sang Jun;Kim, Jin Hee;Oh, Young Kee
    • Radiation Oncology Journal
    • /
    • v.36 no.3
    • /
    • pp.227-234
    • /
    • 2018
  • Purpose: We compared how doses delivered via two-dimensional (2D) intracavitary brachytherapy (ICBT) and three-dimensional (3D) ICBT varied anatomically. Materials and Methods: A total of 50 patients who received 30 Gy of 3D ICBT after external radiotherapy (RT) were enrolled. We compared the doses of the actual 3D and 2D ICBT plans among patients grouped according to six anatomical variations: differences in a small-bowel V2Gy, small bowel circumference, the direction of bladder distension, bladder volume, sigmoid V3.5Gy, and sigmoid circumference. Seven dose parameters were measured in line with the EMBRACE recommendations. Results: In terms of bladder volume, the bladder and small-bowel D2cc values were lower in the 150-250 mL bladder volume subgroup; and the rectum, sigmoid, and bladder D2mL values were all lower in the >250 mL subgroup, for 3D vs. 2D ICBT. In the sigmoid V3.5Gy >2 mL subgroup, the sigmoid and bladder D2mL values were significantly lower for 3D than 2D ICBT. The bladder D2mL value was also significantly lower for 3D ICBT, as reflected by the sigmoid circumference. In patients with a small bowel V2.0Gy >10 mL or small bowel circumference >15%, most dose parameters were significantly lower for 3D than 2D ICBT. The bladder distension direction did not significantly affect the doses. Conclusion: Compared to 2D ICBT, a greater bladder volume can reduce the internal 3D ICBT organ dose without affecting the target dose.

Analysis of High Dose Rate Intracavitary Radiotherapy(HDR-ICR) Treatment Planning for Uterine Cervical Cancer (자궁경부암의 고선량율 강내치료 선량계획 분석)

  • Chai, Gyu-Young
    • Radiation Oncology Journal
    • /
    • v.12 no.3
    • /
    • pp.387-392
    • /
    • 1994
  • Purpose : This study was done to confirm the reference point variation according to variation in applicator configuration in each fractioation of HDR ICR. Materials and Methods : We analyzed the treatment planning of HDRICR for 33 uterine cervical cancer patients treated in department of therapeutic radiology from January 1992 to February 1992. Analysis was done with respect to three view points-Interfractionation A point variation, interfractionation bladder and rectum dose ratio variation, interfractionation treatment volume variation. Interfractionation A point variation was defined as difference between maximum and minimum distance from fixed rectal point to A point in each patient. Interfractionation bladder and rectum dose ratio variation was defined as difference between maximum and minimum dose ratio of bladder or rectum to A point dose in each patient, Interfractionation treatment volume variation was defined as difference between miximum and minimum treatment volume which absorbed over the described dose-that is, 350 cGy or 400 cGy-in each patient. Results The mean of distance from rectum to A point was 4.44cm, and the mean of interfractionation distance variation was 1.14 cm in right side,1.09 cm in left side. The mean of bladder and rectum dose ratio was $63.8\%$ and $63.1\%$ and the mean of interfractionation variation was $14.9\%$ and $15.8\%$ respectively. With fixed planning administration of same planning to all fractionations as in first fractionation planning-mean of bladder and rectum dose ratio was $64.9\%$ and $72.3\%$.and the mean of interfraction variation was $28.1\%$ and $48.1\%$ reapectively. The mean of treatment volume was $84.15cm^3$ and the interfractionation variation was $21.47cm^2$. Conclusion : From these data, it was confirmed that there should be adapted planning for every fractionation ,and that confirmation device installed in ICR room would reduce the interfractionation variation due to more stable applicator configuration.

  • PDF

The Relationship between Radiation Dose and Late Complication of Bladder in Carcinoma of the Uterine Cervix (자궁경부암에서 방사선량과 방광합병증의 관계)

  • Ha, Sung-Whan;Chung, Woong-Ki;Kim, Jong-Hoon
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.377-385
    • /
    • 1993
  • Five hundred and fifty patients treated for carcinoma of the uterine cervix at the Department of Therapeutic Radiology, Seoul National University Hospital from 1979 to 1986, were analyzed retrospectively for late bladder complications. Of them,468 patients received primary radiotherapy for the cervix cancer in intact uterus, and the other 82 patients were treated postoperatively. The cumulative incidence of radiation induced bladder complication of grade 2 or 3 was $2.5\%$ at five years. The mean bladder dose for the group of patients with complication was higher than that of the group without complication, and the difference was statistically significant (p<0.01). But relationship between mean bladder dose and severity of complication was not found. The frequency of complication (grade I, II, III) increased as a function of radiation dose to bladder from $5.0\%$ for patients with bladder dose less than 6,500 cGy to $27.7\%$ for patients with bladder dose higher than 8,000 cGy. Among various factors, the age of patient and the distance between ovoids turned out to have significant effect on the complication.

  • PDF

Study of Patient's Position to Reduce Late Complications in High Dose Rate Intracavitary Radiation of the Uterine Cervix Cancer (자궁경부암의 고선량율 강내 방사선치료 시 부작용을 줄이기 위한 적정 치료 자세의 연구)

  • Yun, Hyong-Geun;Shin, Kyo-Chul
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.477-483
    • /
    • 1998
  • Purpose : Radiation proctitis and radiation cystitis are frequent and problematic late complications in patients treated with radiation for the uterine cervix cancer. Authors tried to find out the better patient's position in high dose rate intracavitary radiation to reduce the radiation dose of bladder and rectum. Materials and Methods : In 13 patients, Foley Catheters were inserted to patient's bladder and rectum and were ballooned with radioopaque dye. After insertion of a tandem and two ovoids, semi-orthogonal anteroposterior and lateral films were taken in both lithotomy and supine position. The rectal point and bladder point were defined according to the criteria recommended in the ICRU Report 38 with modification. Using these films, all patients' bladder and rectal dose were calculated in both positions (the radiation dose of A point was set to 400 cGy). And also, the distance of bladder and rectum from uterine cervical os was calculated in both positions. Results : The average radiation dose of rectum was 240.7 cGy in lithotomy position and 278.3 cGy in supine position, and the average radiation dose of bladder was 303.5 cGy in lithotomy position and 255.8 cGy in supine position. After the paired t-test, the radiation dose of rectum in lithotomy position was marginally significantly lower than that in supine position, while the radiation dose of bladder in lithotomy position was significantly higher than that in supine position. On the other hand, the average distance between rectum and cervical os was 35.2 mm in lithotomy position and 32.3 mm in supine position. and the average distance between bladder and cervical os was 30.4 mm in lithotomy position and 34.0 mm in supine position. After the paired t-test. the distance between rectum and cervical os in lithotomy position was significantly longer than that in supine position, while the distance between bladder and cervical os in lithotomy position was significantly shorter than that in supine position. Conclusion : The radiation dose of bladder can be reduced in supine position and the radiation dose of rectum can be reduced in lithotomy position, so we can choose appropriate position in each patient.

  • PDF

Bladder And Rectum Dose Define 3D Treatment Planning for Cervix Cancer Brachtherapy Comparison of Dose-Volume Histograms for Organ Contour and Organ Wall Contour (자궁경부암의 고선량률 근접치료시 장기묘사 방법에 따른 직장과 방광의 선량비교 분석)

  • Kim, Jong-Won;Kim, Dae-Hyun;Choi, Joon-Yong;Won, Yeong-Jin
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.327-333
    • /
    • 2012
  • Purpose: To analyze the correlation between dose volume histograms(DVH) based on organ outer wall contour and organ wall delineation for bladder and rectum, and to compare the doses to these organs with the absorbed doses at the bladder and rectum. Material and methods: Individual CT based brachytherapy treatment planning was performed in 13 patients with cervical cancer as part of a prospective comparative trial. The external contours and the organ walls were delineated for the bladder and rectum in order to compute the corresponding dose volume histograms. The minimum dose in 0.1 $cm^3$, 1 $cm^3$, 2 $cm^3$, 5 $cm^3$, 10 $cm^3$ volumes receiving the highest dose were compared with the absorbed dose at the rectum and bladder reference point. Results: The bladder and rectal doses derived from organ outer wall contour and computed for volumes of 2 $cm^3$, provided a good estimate for the doses computed for the organ wall contour only. This correspondence was no longer true when large volumes were considered. Conclusion: For clinical applications, when volumes smaller than 5 $cm^2$ are considered, the dose-volume histograms computed from external organ contours for the bladder and rectum can be used instead of dose -volume histograms computed for the organ walls only. External organ contours are indeed easier to obtain. The dose at the ICRU rectum reference point provides a good estimate of the rectal dose computed for volumes smaller than 2 $cm^2$ only for a midline position of the rectum. The ICRU bladder reference point provides a good estimate of the dose computed for the bladder wall only in cases of appropriate balloon position.

Comparative Evaluation of Two-dimensional Radiography and Three Dimensional Computed Tomography Based Dose-volume Parameters for High-dose-rate Intracavitary Brachytherapy of Cervical Cancer: A Prospective Study

  • Madan, Renu;Pathy, Sushmita;Subramani, Vellaiyan;Sharma, Seema;Mohanti, Bidhu Kalyan;Chander, Subhash;Thulkar, Sanjay;Kumar, Lalit;Dadhwal, Vatsla
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4717-4721
    • /
    • 2014
  • Background: Dosimetric comparison of two dimensional (2D) radiography and three-dimensional computed tomography (3D-CT) based dose distributions with high-dose-rate (HDR) intracavitry radiotherapy (ICRT) for carcinoma cervix, in terms of target coverage and doses to bladder and rectum. Materials and Methods: Sixty four sessions of HDR ICRT were performed in 22 patients. External beam radiotherapy to pelvis at a dose of 50 Gray in 27 fractions followed by HDR ICRT, 21 Grays to point A in 3 sessions, one week apart was planned. All patients underwent 2D-orthogonal and 3D-CT simulation for each session. Treatment plans were generated using 2D-orthogonal images and dose prescription was made at point A. 3D plans were generated using 3D-CT images after delineating target volume and organs at risk. Comparative evaluation of 2D and 3D treatment planning was made for each session in terms of target coverage (dose received by 90%, 95% and 100% of the target volume: D90, D95 and D100 respectively) and doses to bladder and rectum: ICRU-38 bladder and rectum point dose in 2D planning and dose to 0.1cc, 1cc, 2cc, 5cc, and 10cc of bladder and rectum in 3D planning. Results: Mean doses received by 100% and 90% of the target volume were $4.24{\pm}0.63$ and $4.9{\pm}0.56$ Gy respectively. Doses received by 0.1cc, 1cc and 2cc volume of bladder were $2.88{\pm}0.72$, $2.5{\pm}0.65$ and $2.2{\pm}0.57$ times more than the ICRU bladder reference point. Similarly, doses received by 0.1cc, 1cc and 2cc of rectum were $1.80{\pm}0.5$, $1.48{\pm}0.41$ and $1.35{\pm}0.37$ times higher than ICRU rectal reference point. Conclusions: Dosimetric comparative evaluation of 2D and 3D CT based treatment planning for the same brachytherapy session demonstrates underestimation of OAR doses and overestimation of target coverage in 2D treatment planning.

Packing effects on the intracavitary radiation Therapy 3-Dimension plan of the uterine cervix cancer (자궁경부암 강내조사 3차원 치료계획 시 Packing의 유용성 분석)

  • Si, Chang-Keun;Jo, Jung-Kun;Lee, Du-Hyun;Kim, Sun-Yeung;Kim, Tae-Yoon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Purpose : An effect of a packing to uterine treatment of a cervical cancer using a dose-volume histogram for a point dose and a volume dose of the bladder and the rectum was analyzed by establishing a three-dimensional treatment plan using a CT image. Materials and methods : Reference points of the bladder and the rectum were marked, respectively at a treatment plan device (plato brachytherapy V14.2.4) by photographing CT(marconi, USA) when the packing was used and removed under the same condition and a treatment plan was performed to Apoint depending on ICRU38. However, in case of the rectum, a maximum point was looked up and compared with the above point because the point presented from the ICRU is not proper as a representative value of a rectum point dose. Further, the volume dose depending on volume of $50\%,\;80\%,\;and\;100\%$ point doses of the rectum and the bladder was measured. The measured values were used to analyze the effect of the packing through a Wilcoxon Signed Rank Test (a SAS statistical analysis process program). Result : The reference points at the bladder and rectum doses when the packing was removed were $116.94\;35.42\%$ and $117.59\;21.08\%$, respectively. The points when the packing was used were $107.08\;38.12\%$ and $95.19\;21.32\%$, respectively. After the packing was used, the reference points at the bladder and the rectum were decreased by $9.86\%$ and $22.4\%$, respectively. When the packing was removed, the maximum points at the bladder and the rectum were $164.51\;50.89\%,\;128.81\;33.05\%$, respectively. When the packing was used, the maximum points at the bladder and the rectum were $142.31\;44.79,\;110.08\;37.03\%$, respectively. After the packing was used, the maximum points at the bladder and the rectum were decreased by $22.2\%$ and $18.73\%$, respectively. When the packing was removed, the bladder volume at $50\%,\;80\%,\;and\;100\%$ point doses of the rectum and the bladder were $48.62{\pm}18.09\%,\;16.12{\pm}11.15\%,\;and\;7.51{\pm}6.63\%$, respectively and its rectum volume were $23.41{\pm}14.44\%,\;6.27{\pm}4.28\%,\;2.79{\pm}2.27\%$, respectively. When the packing was used, the bladder volume at $50\%,\;80\%,\;and\;100\%$ point doses of the rectum and the bladder were $40.33{\pm}16.72,\;11.63{\pm}8.72,\;and\;4.87{\pm}4.75\%$, respectively and its rectum volume were $18.96{\pm}8.37\%,\;4.75{\pm}2.58\%,\;and\;1.58{\pm}1.06\%$, respectively. After the packing was used, the bladder volume at $50\%,\;80\%,\;and\;100\%$ point doses of the rectum and the bladder were decreased by $8.29\%,\;4.49\%,\;and\;2.64\%$, respectively and its bladder volume were decreased by $4.45\%,\;1.52\%,\;and\;1.21\%$, respectively. Conclusion : Values at Reference point doses of the bladder and the rectum recommended from the ICRU 38 were 0.0781 and 0.0781, respectively and values of their maximum point doses were 0.0156 and 0.0156, respectively, as a result of which an effect of the packing using at the uterine intracavitary treatment of an uterine cervical cancer through the three-dimensional treatment plan used CT were measured. That is, the values at reference point doses and the values at maximum point doses show similar difference. However, P value was 0.15 at over $50\%,\;80\%,\;and\;100\%$ volume doses and the value shows no similar difference. In other words, the effect of the packing looks like having a difference at the point dose, but actually shows no difference at the volume dose. The reason is that the volume of the bladder and the rectum are wide but the volume of the packing is only a portion. Therefore, the effect of decreasing the point dose was not great. Further, the farer the distance is, the more weak the intensity of radiation is because the intensity of radiation is proportional to inverse square of a distance. Therefore, the effort to minimize an obstacle of the bladder and the rectum by using the packing should be made.

  • PDF