• 제목/요약/키워드: Black-Scholes Option Pricing Model

검색결과 39건 처리시간 0.028초

The Stochastic Volatility Option Pricing Model: Evidence from a Highly Volatile Market

  • WATTANATORN, Woraphon;SOMBULTAWEE, Kedwadee
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권2호
    • /
    • pp.685-695
    • /
    • 2021
  • This study explores the impact of stochastic volatility in option pricing. To be more specific, we compare the option pricing performance between stochastic volatility option pricing model, namely, Heston option pricing model and standard Black-Scholes option pricing. Our finding, based on the market price of SET50 index option between May 2011 and September 2020, demonstrates stochastic volatility of underlying asset return for all level of moneyness. We find that both deep in the money and deep out of the money option exhibit higher volatility comparing with out of the money, at the money, and in the money option. Hence, our finding confirms the existence of volatility smile in Thai option markets. Further, based on calibration technique, the Heston option pricing model generates smaller pricing error for all level of moneyness and time to expiration than standard Black-Scholes option pricing model, though both Heston and Black-Scholes generate large pricing error for deep-in-the-money option and option that is far from expiration. Moreover, Heston option pricing model demonstrates a better pricing accuracy for call option than put option for all level and time to expiration. In sum, our finding supports the outperformance of the Heston option pricing model over standard Black-Scholes option pricing model.

Performances of Simple Option Models When Volatility Changes

  • Jung, Do-Sub
    • 디지털융복합연구
    • /
    • 제7권1호
    • /
    • pp.73-80
    • /
    • 2009
  • In this study, the pricing performances of alternative simple option models are examined by creating a simulated market environment in which asset prices evolve according to a stochastic volatility process. To do this, option prices fully consistent with Heston[9]'s model are generated. Assuming this prices as market prices, the trading positions utilizing the Black-Scholes[4] model, a semi-parametric Corrado-Su[7] model and an ad-hoc modified Black-Scholes model are evaluated with respect to the true option prices obtained from Heston's stochastic volatility model. The simulation results suggest that both the Corrado-Su model and the modified Black-Scholes model perform well in this simulated world substantially reducing the biases of the Black-Scholes model arising from stochastic volatility. Surprisingly, however, the improvements of the modified Black-Scholes model over the Black-Scholes model are much higher than those of the Corrado-Su model.

  • PDF

FPGA-Based Design of Black Scholes Financial Model for High Performance Trading

  • Choo, Chang;Malhotra, Lokesh;Munjal, Abhishek
    • Journal of information and communication convergence engineering
    • /
    • 제11권3호
    • /
    • pp.190-198
    • /
    • 2013
  • Recently, one of the most vital advancement in the field of finance is high-performance trading using field-programmable gate array (FPGA). The objective of this paper is to design high-performance Black Scholes option trading system on an FPGA. We implemented an efficient Black Scholes Call Option System IP on an FPGA. The IP may perform 180 million transactions per second after initial latency of 208 clock cycles. The implementation requires the 64-bit IEEE double-precision floatingpoint adder, multiplier, exponent, logarithm, division, and square root IPs. Our experimental results show that the design is highly efficient in terms of frequency and resource utilization, with the maximum frequency of 179 MHz on Altera Stratix V.

VALUATION FUNCTIONALS AND STATIC NO ARBITRAGE OPTION PRICING FORMULAS

  • Jeon, In-Tae;Park, Cheol-Ung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권4호
    • /
    • pp.249-273
    • /
    • 2010
  • Often in practice, the implied volatility of an option is calculated to find the option price tomorrow or the prices of, nearby' options. To show that one does not need to adhere to the Black- Scholes formula in this scheme, Figlewski has provided a new pricing formula and has shown that his, alternating passive model' performs as well as the Black-Scholes formula [8]. The Figlewski model was modified by Henderson et al. so that the formula would have no static arbitrage [10]. In this paper, we show how to construct a huge class of such static no arbitrage pricing functions, making use of distortions, coherent risk measures and the pricing theory in incomplete markets by Carr et al. [4]. Through this construction, we provide a more elaborate static no arbitrage pricing formula than Black-Sholes in the above scheme. Moreover, using our pricing formula, we find a volatility curve which fits with striking accuracy the synthetic data used by Henderson et al. [10].

BARRIER OPTION PRICING UNDER THE VASICEK MODEL OF THE SHORT RATE

  • Sun, Yu-dong;Shi, Yi-min;Gu, Xin
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1501-1509
    • /
    • 2011
  • In this study, assume that the stock price obeys the stochastic differential equation driven by mixed fractional Brownian motion, and the short rate follows the Vasicek model. Then, the Black-Scholes partial differential equation is held by using fractional Ito formula. Finally, the pricing formulae of the barrier option are obtained by partial differential equation theory. The results of Black-Scholes model are generalized.

AN ADAPTIVE MULTIGRID TECHNIQUE FOR OPTION PRICING UNDER THE BLACK-SCHOLES MODEL

  • Jeong, Darae;Li, Yibao;Choi, Yongho;Moon, Kyoung-Sook;Kim, Junseok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권4호
    • /
    • pp.295-306
    • /
    • 2013
  • In this paper, we consider the adaptive multigrid method for solving the Black-Scholes equation to improve the efficiency of the option pricing. Adaptive meshing is generally regarded as an indispensable tool because of reduction of the computational costs. The Black-Scholes equation is discretized using a Crank-Nicolson scheme on block-structured adaptively refined rectangular meshes. And the resulting discrete equations are solved by a fast solver such as a multigrid method. Numerical simulations are performed to confirm the efficiency of the adaptive multigrid technique. In particular, through the comparison of computational results on adaptively refined mesh and uniform mesh, we show that adaptively refined mesh solver is superior to a standard method.

Option pricing and profitability: A comprehensive examination of machine learning, Black-Scholes, and Monte Carlo method

  • Sojin Kim;Jimin Kim;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • 제31권5호
    • /
    • pp.585-599
    • /
    • 2024
  • Options pricing remains a critical aspect of finance, dominated by traditional models such as Black-Scholes and binomial tree. However, as market dynamics become more complex, numerical methods such as Monte Carlo simulation are accommodating uncertainty and offering promising alternatives. In this paper, we examine how effective different options pricing methods, from traditional models to machine learning algorithms, are at predicting KOSPI200 option prices and maximizing investment returns. Using a dataset of 2023, we compare the performance of models over different time frames and highlight the strengths and limitations of each model. In particular, we find that machine learning models are not as good at predicting prices as traditional models but are adept at identifying undervalued options and producing significant returns. Our findings challenge existing assumptions about the relationship between forecast accuracy and investment profitability and highlight the potential of advanced methods in exploring dynamic financial environments.

A SPECIFICATION TEST OF AT-THE-MONEY OPTION IMPLIED VOLATILITY: AN EMPIRICAL INVESTIGATION

  • Kim, Hong-Shik
    • 재무관리논총
    • /
    • 제3권1호
    • /
    • pp.213-231
    • /
    • 1996
  • In this study we conduct a specification test of at-the-money option volatility. Results show that the implied volatility estimate recovered from the Black-Scholes European option pricing model is nearly indistinguishable from the implied volatility estimate obtained from the Barone-Adesi and Whaley's American option pricing model. This study also investigates whether the use of Black-Scholes implied volatility estimates in American put pricing model significantly affect the prediction the prediction of American put option prices. Results show that, at long as the possibility of early exercise is carefully controlled in calculation of implied volatilities prediction of American put prices is not significantly distorted. This suggests that at-the-money option implied volatility estimates are robust across option pricing model.

  • PDF

Variance Gamma 과정을 이용한 옵션 가격의 결정 연구 (A Study of Option Pricing Using Variance Gamma Process)

  • 이현의;송성주
    • 응용통계연구
    • /
    • 제25권1호
    • /
    • pp.55-66
    • /
    • 2012
  • 블랙-숄즈 모형이 실제 기초자산의 움직임을 반영하지 못한다는 사실이 실증연구에 의하여 밝혀진 이후 기초자산의 움직임을 레비확률과정을 이용하여 모형화한 옵션가격결정 모형들이 그 대안 중 하나로 연구되어 왔다. 본 논문에서는 블랙-숄즈 모형의 대안으로 제시된 레비모형 중 Variance Gamma 모형이 국내 주식시장에서의 기초자산의 움직임을 블랙-숄즈 모형보다 충실히 재현해내는지 알아보고자 한다. 이를 위하여 Madan 등 (1998)의 연구에서와 같이 로그수익률의 확률밀도함수와 옵션 가격 결정식을 바탕으로 KOSPI 200자료를 이용하여 모수를 추정하고 우도비 검정을 실시하였다. 또한, 옵션 가격을 추정한 후 모형 간의 비교를 위하여 다양한 통계량을 계산하고, 회귀분석을 통하여 변동성 스마일 현상이 교정되는지를 살펴보았다. 연구결과로부터 Variance Gamma 모형 하에서 추정된 옵션 가격이 블랙-숄즈 모형 하에서 추정된 그것보다 더 시장가격과 가까우나, 이 모형도 변동성 스마일 현상을 해결해주지는 못함을 확인할 수 있었다.

OPM에 의한 주식가치(株式價値) 평가(評價) (The Pricing of Corporate Common Stock By OPM)

  • 정형찬
    • 재무관리연구
    • /
    • 제1권1호
    • /
    • pp.133-149
    • /
    • 1985
  • The theory of option pricing has undergone rapid advances in recent years. Simultaneously, organized option markets have developed in the United States and Europe. The closed form solution for pricing options has only recently been developed, but its potential for application to problems in finance is tremendous. Almost all financial assets are really contingent claims. Especially, Black and Scholes(1973) suggest that the equity in a levered firm can be thought of as a call option. When shareholders issue bonds, it is equivalent to selling the assets of the firm to the bond holders in return for cash (the proceeds of the bond issues) and a call option. This paper takes the insight provided by Black and Scholes and shows how it may be applied to many of the traditional issues in corporate finance such as dividend policy, acquisitions and divestitures and capital structure. In this paper a combined capital asset pricing model (CAPM) and option pricing model (OPM) is considered and then applied to the derivation of equity value and its systematic risk. Essentially, this paper is an attempt to gain a clearer focus theoretically on the question of corporate stock risk and how the OPM adds to its understanding.

  • PDF