• Title/Summary/Keyword: Black phosphorus

Search Result 41, Processing Time 0.027 seconds

Black Phosphorus Nano Flake Lithium Ion Battery Using Electrophoretic Deposition (전기영동 증착법을 이용한 Black Phosphorus Nano Flake 리튬이온 배터리)

  • Kim, Juyun;Park, Byoungnam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.252-255
    • /
    • 2019
  • Black phosphorus (BP) is a potential candidate for an anode in lithium ion batteries due to its high theoretical capacity and the large interlayer spacing in the monolayered phosphorene form, allowing for lithium intercalation/deintercalation. In this study, large-scale exfoliation of bulk BP was accomplished using a solution of NaOH and N-methyl-2-pyrrolidone (NMP), yielding phosphorene, which can be assembled into nanoflakes using electrophoretic deposition (EPD). Through the systematic addition of NaOH and subsequent sonication, BP nanoflakes were obtained in high yields by EPD, allowing for the integration of these nanoflakes into an anode in the film state. Anodes with a charge/discharge capacity of 172 mAh/g at a rate of 200 mA/g were obtained, which are promising for battery applications through various post-film treatments.

Effective Passivation of Black Phosphorus under Ambient Conditions

  • Yoon, Jongchan;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.176-186
    • /
    • 2017
  • Two-dimensional (2D) materials have been studied widely owing to their outstanding properties since monolayer graphene was isolated in 2004. Especially, among 2D materials, phosphorene, a single atomic layer of black phosphorus (BP), has been highlighted for its electrical properties. This material can serve as a substitute for graphene, which has been revealed as a "semi-metal", in next-generation semiconductors. However, few-layer BP is prone to degradation under ambient conditions owing to its reactivity with oxygen and water, which results in the condensation of water droplets on the surface of the BP flakes. This causes charge transfer from the phosphorus atom to oxygen, resulting in the formation of phosphoric acid (oxide) and degrades the various properties of BP. Therefore, it is necessary to find passivation methods to prevent BP flakes from being degraded under ambient conditions. This review article deals with recent studies on passivation methods for BP and their performance against oxygen and water, effects on the electrical properties of BP, and the extent to how they protect BP.

Degradation Pattern of Black phosphorus Field Effect Transistor

  • Lee, Byeong-Cheol;Ju, Min-Gyu;Jin, Jun-Eon;Lee, Jae-U;Kim, Gyu-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.120.1-120.1
    • /
    • 2015
  • We investigate the degradation pattern of Black phosphorus (BP) field effect transistor (FETs) investigated by using an mechanically exfoliated BP that react O2 and water vapor in ambient condition, degradation. The BP FETs was electrically measured every 20 minutes (1cycle) in the air, the total cycle is 100. We show electrical changes with Mobility, On/off ratio, Current and a significant positive shift in the threshold voltage. We extracted the current level at Vgs-Vth = 0, -10, -20 and fitting with Swiss-cheese model. This model suggested that Swiss-cheese model is well fitted with degradation pattern of BP FETs.

  • PDF

Degradation Pattern of Black phosphorus Field Effect Transistor

  • Lee, Byeong-Cheol;Ju, Min-Gyu;Jin, Jun-Eon;Lee, Jae-U;Kim, Gyu-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.167.1-167.1
    • /
    • 2015
  • We investigate the degradation pattern of Black phosphorus (BP) field effect transistor (FETs) was investigated by using an mechanically exfoliated BP that react O2 and water vapor in ambient condition, degradation. The BP FETs was electrically measured every 20 minutes (1cycle) in the air, the total cycle is 100. We show electrical changes with Mobility, On/off ratio, Current and a significant positive shift in the threshold voltage. We extracted the current level at Vgs-Vth = 0, -10, -20 and fitting with Swiss-cheese model. This model suggested that Swiss-cheese model is well fitted with degradation pattern of BP FETs.

  • PDF

A Ridge-type Silicon Waveguide Optical Modulator Based on Graphene and Black Phosphorus Heterojunction

  • Zhenglei Zhou;Jianhua Li;Desheng Yin;Xing Chen
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.399-405
    • /
    • 2024
  • In this paper, an optical modulator based on monolayer graphene and triple-layer black phosphorus (BP) heterojunction in the optical communication band range is designed. The influences of geometric parameters, chemical potential, BP orientation and dispersion on the fundamental mode of this modulator were determined in detail by the finite-difference time-domain (FDTD) method. Using appropriate geometric parameter settings, the extinction ratio of this proposed modulator is 0.166 dB, while the modulator with a working length of 3 ㎛ can realize a 0.498 dB modulation depth. The 3-dB bandwidth of this modulator could achieve up to 2.65 GHz with 27.23 fJ/bit energy consumption. The extinction ratio and bandwidth of the proposed modulator increased by 66% and 120.83%, respectively, compared to the monolayer graphene-based ridge-type waveguide modulator. Energy consumption was reduced by 97.28%, compared to a double-layer graphene-based modulator.

Electronic property of orthogonally stacked black phosphorus(BP)

  • Jeon, Seong-Hyeok;Jeong, Seong-U
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.490-495
    • /
    • 2017
  • 이전까지 시도된 적이 없는 교차하게 쌓인 black phosphorus (BP) 구조에 대하여 전기적 특성을 분석하였다. 일반적인 BP에서와 같이 A-B stacking을 기반으로 한 구조가 A-A stacking을 기반으로 한 구조보다 약간 안정한 것이 확인되었으며 두 구조 모두에서 방향에 따른 anisotropy가 없어진 것을 확인하였다. Transmission은 기본적인 bilayer BP의 armchair direction에 비하여 낮게 나왔다. 결론적으로 anisotropy가 존재하지 않는 안정된 bilayer BP 구조를 찾는 것에 성공하였다.

  • PDF

Transparent Black Phosphorus Nanosheet Film for Photoelectrochemical Water Oxidation

  • Choi, Chang-Ho
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.217-222
    • /
    • 2021
  • Although monolayer black phosphorus (BP) and few-layer BP nanosheets (NSs) have been extensively studied as promising alternatives to graphene, research has focused primarily on atomically thin-layered BP in an isolated form. In order to realize the practical applications of BP-related devices, a BP film based on continuous networking of few-layer BP NSs should be developed. In this study, a transparent BP film with high quality was fabricated via a vacuum filtration method. An oxygen-free water solvent was used as an exfoliation medium to avoid significant oxidation of the few-layer BP NSs in liquid-phase exfoliation. The exfoliation efficiency from bulk BP to the few-layer BP NSs was estimated at 22%, which is highly efficient for the production of continuous BP film. The characteristics of the high-quality BP film were determined as 98% transparency, minimum oxidation of 18%, structural stability, and an appropriate bandgap of about 1.8 eV as a semiconductor layer. In order to demonstrate the potential of the BP film for photocatalytic activity, we performed photoelectrochemical water oxidation of the transparent BP film. Although its performance should be improved for practical applications, the BP film could function as a photoanode, which offers a new potential semiconductor in water oxidation. We believe that if the BP film is adequately engineered with other catalysts the photocatalytic activity of the BP film will be improved.

Electronic Structures of Thin Films of Black Phosphorus

  • Kim, Hye-Gyeong
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.287-289
    • /
    • 2013
  • How the different thickness of thin films of black-P has an effect on its electronic band structure and structure has been studied by using SIESTA code. Although the interaction between the thin films has something to do with band reduction, it does not affect the inter-atomic distance between two nearest neighbour puckered layers.

  • PDF

Application of black phosphorus nanodots to live cell imaging

  • Shin, Yong Cheol;Song, Su-Jin;Lee, Yu Bin;Kang, Moon Sung;Lee, Hyun Uk;Oh, Jin-Woo;Han, Dong-Wook
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.352-359
    • /
    • 2018
  • Background: Black phosphorus (BP) has emerged as a novel class of nanomaterials owing to its unique optical and electronic properties. BP, a two-dimensional (2D) nanomaterial, is a structure where phosphorenes are stacked together in layers by van der Waals interactions. However, although BP nanodots have many advantages, their biosafety and biological effect have not yet been elucidated as compared to the other nanomaterials. Therefore, it is particularly important to assess the cytotoxicity of BP nanodots for exploring their potentials as novel biomaterials. Methods: BP nanodots were prepared by exfoliation with a modified ultrasonication-assisted solution method. The physicochemical properties of BP nanodots were characterized by transmission electron microscopy, dynamic light scattering, Raman spectroscopy, and X-ray diffractometry. In addition, the cytotoxicity of BP nanodots against C2C12 myoblasts was evaluated. Moreover, their cell imaging potential was investigated. Results: Herein, we concentrated on evaluating the cytotoxicity of BP nanodots and investigating their cell imaging potential. It was revealed that the BP nanodots were cytocompatible at a low concentration, although the cell viability was decreased with increasing BP nanodot concentration. Furthermore, our results demonstrated that the cells took up the BP nanodots, and the BP nanodots exhibited green fluorescence. Conclusions: In conclusion, our findings suggest that the BP nanodots have suitable biocompatibility, and are promising candidates as fluorescence probes for biomedical imaging applications.

Changes in Chemical Components of Chungkugiang Prepared with Small Black Bean (소립검정콩 청국장의 화학성분 변화)

  • 손미예;권선화;성찬기;박석규;최상도
    • Journal of Life Science
    • /
    • v.11 no.3
    • /
    • pp.284-290
    • /
    • 2001
  • Changes in chemical components of small black bean chungkugjang(SBBC) added with kiwi and radish as foodstuffs to repress off-odor and enhance the quality of SBBC suring fermentation were investigated. Optimal pretreatment conditions of small black bean suitable to the fermentation of chungkugjang were 3 hrs of soaking time 1.5 times of ratio of water to black bean. 1.0 atm of high pressure, 20 min of heating time, cutting and crushing of heat-treated black bean. Moisture content of SBBC was remarkably lower than that of soybean chungkugjang(SBC) as control. Crude protein of SBBC was in the range 23.37∼25.71% and higher than that of SBC, Crude lipid of SBBC was lower than that of SBC. Crude lipid of SBBC added with kiwi and radish paste was decreased than that of SBBC without two foodstuffs. pH of SBBC were rapidly increased to 24 hrs of fermentation and gradually increased thereafter. Total acidity was shown to be reversely decreased as compared to pH tendency. Reducing sugar was increased to 24 hrs of fermentation and then decreased. In SBBC and SBC, potassium was the most abundant followed by phosphorus, magnesium and calcium.

  • PDF