• Title/Summary/Keyword: Black carbon particles

Search Result 150, Processing Time 0.027 seconds

[Retraction]Characterization of carbon black nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)

  • Kim, Kihyun;Lee, Seungho;Kim, Woonjung
    • Analytical Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.77-87
    • /
    • 2019
  • High viscosity carbon black dispersions are used in various industrial fields such as color cosmetics, rubber, tire, plastic and color filter ink. However, carbon black particles are unstable to heat due to inherent characteristics, and it is very difficult to keep the quality of the product constant due to agglomeration of particles. In general, particle size analysis is performed by dynamic light scattering (DLS) during the dispersion process in order to select the optimum dispersant in the carbon black dispersion process. However, the existing low viscosity analysis provides reproducible particle distribution analysis results, but it is difficult to select the optimum dispersant because it is difficult to analyze the reproducible particle distribution at high viscosity. In this study, dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) analysis methods were compared for reproducible particle size analysis of high viscosity carbon black. First, the stability of carbon black dispersion was investigated by particle size analysis by DLS and AsFlFFF according to milling time, and the validity of analytical method for the selection of the optimum dispersant useful for carbon black dispersion was confirmed. The correlation between color and particle size of particles in high viscosity carbon black dispersion was investigated by using colorimeter. The particle size distribution from AsFlFFF was consistent with the colorimetric results. As a result, the correlation between AsFlFFF and colorimetric results confirmed the possibility of a strong analytical method for determining the appropriate dispersant and milling time in high viscosity carbon black dispersions. In addition, for nanoparticles with relatively broad particle size distributions such as carbon black, AsFlFFF has been found to provide a more accurate particle size distribution than DLS. This is because AsFlFFF, unlike DLS, can analyze each fraction by separating particles by size.

On-line Measurement of the Surface Area Concentration of Aerosols in Yokohama, Japan, using the Diffusion Charging Method

  • Hatoya, Kazuki;Okuda, Tomoaki;Funato, Koji;Inoue, Kozo
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • Numerous researchers have proposed that surface area is a more appropriate indicator than mass for evaluating pulmonary inflammatory responses caused by exposure to fine and ultrafine particles. In this study, measurements of surface area concentrations of aerosols were conducted in Yokohama, Japan, using the diffusion charging method. $PM_{2.5}$ mass concentration and black carbon concentration in $PM_{2.5}$ were also measured. The 24-hour continuous measurement campaigns were conducted 39 times from March to November, 2014. The surface area concentration was more closely correlated with the black carbon concentration than with the $PM_{2.5}$ mass concentration. It is considered that the abundance of black carbon particles significantly affects the surface area concentration of $PM_{2.5}$. The strength of the correlation between the surface area and black carbon concentrations varied considerably among the measurement campaigns. A relatively weaker afternoon correlation was observed compared with the other time zones (morning, evening, and night). We consider that these phenomena are due to the transportation/formation of the particles other than black carbon that affects surface area concentration and/or the variation of the surface condition of the black carbon particles.

Suspension Polymerization with Hydrophobic Silica as a Stabilizer II. Preparation of Polystyrene Composite Particles Containing Carbon Black (소수성 실리카를 안정제로 하는 현탁중합 II. 카본블랙을 함유하는 폴리스티렌 복합체 입자의 합성)

  • Park, Moon-Soo
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.505-511
    • /
    • 2006
  • We tried to prepare polystyrene composite particles containing carbon black by suspension polymerization with water as a reaction medium. Hydrophobic silica was selected as a stabilizer and oil-soluble azobisisobutyronitrile (AIBN), as an initiator. All polymerization reactions were carried out at a fixed temperature of $75^{\circ}C$. Stabilizer concentration was varied from $0.17{\sim}3.33wt%$ compared to water, where particles with $7.96{\mu}m$ in average diameter were obtained at 1.57 wt% of stabilizer. Increase in divinylbenzene concentration, as a crosslinking agent, from $0.1{\sim}1.0 wt%$ compared to monomer exhibited a large increase in average particle diameter Incorporation of 1wt% of carbon black compared to monomer produced an increase in average diameter It is speculated that viscosity lower than that necessary to induce even dispersion of carbon black particles led to poor dispersion, and as a result, large particles. For a styrene mixture containing 3 wt% carton black compared to monomer, enhanced dispersion due to an increase in carbon black concentration reduced average particle diameters. For styrene mixtures containing 1 and 3 wt% carbon black compared to monomer, preparticles before polymerization and polymer composite particles after polymerization showed a similar tendency towards particle formation. When carbon black concentration compared to monomer was increased to 5 and 7 wt%, styrene mixtures exhibited a large increase in viscosity and thus better dispersion of carbon black particles, which led to a decrease in preparticle diameters. However, these particles experienced agglomeration in the polymerization process, and polystyrene composite particles increased in average diameter.

Biocompatible Dispersion Methods for Carbon Black

  • Kim, Hwa;Park, Kwangsik;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.209-216
    • /
    • 2012
  • The biological activity of particles is largely dependent on their size in biological systems. Dispersion in the aqueous phase has been both a critical impediment to and a prerequisite for particle studies. Carbon black has been used as a surrogate to investigate the biological effects of carbonaceous particles. Here, biocompatible methods were established to disperse carbon black into ultrafine and fine particles which are generally distinguished by the small size of 100 nm. Carbon black with a distinct particle size, N330 and N990 were suspended in blood plasma, cell culture media, Krebs-Ringer's solution (KR), or physiological salt solution (PSS). Large clumps were observed in all dispersion preparations; however, sonication improved dispersion - averaged particle sizes for N330 and N990 were $85.0{\pm}42.9$ and $112.4{\pm}67.9$ nm, respectively, in plasma; the corresponding sizes in culture media were $84.8{\pm}38.4$ and $164.1{\pm}77.8$ nm. However, sonication was not enough to disperse N330 less than 100 nm in either KR or PSS. Application of Tween 80 along with sonication reduced the size of N330 to less than 100 nm, and dispersed N990 larger than 100 nm ($73.6{\pm}28.8$ and $80.1{\pm}30.0$ nm for N330 and $349.5{\pm}161.8$ and $399.8{\pm}181.1$ nm for N990 in KR and PSS, respectively). In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) exhibited little effect. Electron microscopy confirmed the typical aciniform structure of the carbon arrays; however, zeta potential measurement failed to explain the dispersibility of carbon black. The methods established in this study could disperse carbon black into ultrafine and fine particles, and may serve as a useful model for the study of particle toxicity, particularly size-related effects.

Influence of Carbon Black Contents and Rubber Compositions on Formation of Wear Debris of Rubber Vulcanizates

  • Choi, Sung-Seen;Yang, Seong Ryong;Chae, Eunji;Son, Chae Eun
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.108-113
    • /
    • 2020
  • Wear particles of the model tread compounds for bus and truck tires were made using a laboratory abrasion tester and characterized based on their size distributions, shapes, and crosslink densities. The influence of the carbon black contents and rubber compositions (NR= 100 and NR/BR= 80/20) on the production of wear particles was investigated. The wear particles were separated according to size using a sieve shaker. The shape properties of the wear particles were analyzed using an image analyzer and scanning electron microscopy (SEM). Their shapes were observed as tiny stick cookies or sausages with bumpy surfaces. The particle size distribution tended to be smaller with increasing carbon black content. Moreover, the particle size distributions of the NR = 100 samples were larger than that of the NR/BR blend samples. There were different filaments in the wear particles. The filament diameters tended to be thinner with increasing carbon black content. The crosslink density increased with increasing carbon black content, and the crosslink densities of the NR= 100 samples were lower than those of the NR/BR blend ones. The particle size distribution tended to be smaller with increasing crosslink density. Based on the experimental results, the wear particles can be produced by detaching debris from the main body through repetitive strain and recovery.

Particle-size-dependent aging time scale of atmospheric black carbon (입자 크기의 함수로 나타낸 대기 중 블랙카본의 변성시간척도)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.45-52
    • /
    • 2009
  • Black carbon, which is a by-product of combustion of fossil fuel and biomass burning, is the component that imposes the largest uncertainty on quantifying aerosol climate effect. The direct, indirect and semi-direct climate effects of black carbon depend on its state of the mixing with other water-soluble aerosol components. The process that transforms hydrophobic externally mixed black carbon particles into hygroscopic internally mixed ones is called "aging". In most climate models, simple parameterizations for the aging time scale are used instead of solving detailed dynamics equations on the aging process due to the computation cost. In this study, a new parameterization for the black carbon aging time scale due to condensation and coagulation is presented as a function of the concentration of hygroscopic atmospheric components and the black carbon particle size. It is shown that the black carbon aging time scale due to condensation of sulfuric acid vapors varies to a large extent depending on the sulfuric acid concentration and the black carbon particle size. This result indicates that the constant aging time scale values suggested in the literature cannot be directly applied to a global scale modeling. The aging time scale due to coagulation with internally mixed aerosol particles shows an even stronger dependency on particle size, which implies that the use of a particle-size-independent aging time scale may lead to a large error when the aging is dominated by coagulation.

  • PDF

Suspension Polymerization with Hydrophobic Silica as a Stabilizer III. Poly(butyl methacrylate) Composite Particles Containing Carbon Black (소수성 실리카를 안정제로 하는 현탁중합 III. 카본블랙을 함유하는 폴리부틸메타크릴레이트 복합체 입자의 합성)

  • Moon, Ji-Yeon;Park, Moon-Soo
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.477-484
    • /
    • 2009
  • Suspension polymerization with hydrophobic silica as a stabilizer and AIBN as an initiator was conducted to synthesize PBMA particles and PBMA composite particles containing carbon black. Surface modification of silica particles by controlling pH revealed that 90% of them functioned as stabilizer and 10% were incorporated into PBMA particles. While stabilizer concentration had no impact on reaction kinetics and particle diameter, an increase in stabilizer concentration displayed an increase in molecular weights when it exceeded 1.67 wt%. An increase in initiator concentration and reaction temperature decreased molecular weights in close agreement with the theoretical equation. An increase in carbon black concentration from 1 to 7 wt%, relative to the monomer, showed a progressive decrease in reaction conversion. As carbon black was increased from 3 to 5 wt%, glass transition showed a $4^{\circ}C$ increase. The presence of carbon black was confirmed by TEM while its concentration was measured by TGA.

Carbon Contained Ammonium Diuranate Gel Particles Preparation in Mid-process of High-temperature Gas-cooled Reactor Fuel Fabrication

  • Jeong, Kyung Chai;Cho, Moon Sung
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.175-181
    • /
    • 2016
  • This study investigates the dispersibility of carbon in carbon contained ammonium diuranate (C-ADU) gel particles and the characteristics of C-ADU gel liquid droplets produced by the vibrating nozzle and integrated aging-washing-drying equipment. It was noted that the excellent stability of carbon dispersion was only observed in the C-ADU gel particle that contained carbon black named CB 10. ADU gel liquid droplets containing carbon particles with the excellent sphericity of approximately 1,950 mm were then obtained using an 80-100-Hz vibrating nozzle system. Dried C-ADU gel particles obtained by the aging-washing-drying equipment were thermal decomposed until $500^{\circ}C$ at a rate of $1^{\circ}C/min$ in an air or in 4% $H_2$ gas atmosphere. The thermally decomposed C-ADU gel particles showed 24% weight loss and a more complicated profile than that of ADU gel particles.

Dispersion stability of polyelectrolyte-wrapped carbon black particles in a highly fluorinated solvent

  • Yoon, Hyeon Ji;Choe, Jun Ho;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • v.26
    • /
    • pp.25-30
    • /
    • 2018
  • The dielectric medium used in electrophoretic displays (EPDs) is required to be an environmentally friendly solvent with high density, low viscosity, and a large electric constant. Hydrofluoroether, a highly fluorinated solvent with eco-friendly characteristics, is regarded as a viable alternative medium for EPDs, owing to the similarity of its physical properties to those of the conventional EPD medium. Surface modification of particles is required, however, in order for it to disperse in the charged solvent. Also, positive/negative charges should be present on the particle surface to enable electrophoretic behavior. In this study, carbon black particles wrapped with positively charged nitrogen (N-CBs) were fabricated by a simple hydrothermal process using a poly(diallyldimethylammonium chloride) solution as a black coloring agent for the EPD. The dispersion behavior of N-CBs was investigated in various solvents.

Partial Discharge Properties of PET Film with Carbon Black

  • Lee, Young-Hwan;Lee, Jong-Chan;Park, Yong-Sung;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.1
    • /
    • pp.1-4
    • /
    • 2004
  • This paper presents an investigation of the phase-resolved partial discharge (PD) pattern of PET (Poly Ethylene Telephthalate) films with carbon black particles. The phase-resolved PD pattern and statistical parameter from PET samples according to the number of included semiconductor particles were measured. The measurement system consisted of a conventional PD detector using a digital signal processing technique. The partial discharge patterns of the PET films that include the semiconductor particles were investigated to simulate an actual situation that may exist in the cable. In addition, difference of PD patterns between semiconducting particles in PET films and artificial voids was studied. The relationship between the numbers of semiconductor particles in PET films was discussed through the difference of Ψ-q-n distribution and statistical analysis.