• 제목/요약/키워드: Bizelesin DNA interstrand cross-links

검색결과 2건 처리시간 0.016초

Base Specificity for DNA Interstrand Cross-Linking Induced by Anticancer Agent Bizelesin

  • Lee, Chong-Soon;Myung, Pyung-Keun;Gibson, Neil W.
    • Archives of Pharmacal Research
    • /
    • 제19권3호
    • /
    • pp.191-196
    • /
    • 1996
  • Bizelesin is a promising novel anticancer agent which is known to alkylate N3 of adenine to induce DNA interstrand cross-links (ISC) with in $5^I-TAATTA\; and\; 5^I-TAAAAAA$. We have investigated the base specificity for DNA ISC induced by bizelesin using oligomers containing the cross-linkable sequence $5^I-TAATTA\; and\; 5^I-TAAAAAA$. in which "N" was either A, C, G, or T. An analysis of denaturing polyacrylamide gel showed that bizelesin is able to induce DNA ISC in the duplex oligomer containing sequences $5^I-TAATTA\; and\; 5^I-TAAAAAA$. The formation of interstrand crosslinking did not occur in the sequences $5^I-TAATTA\; and\; 5^I-TAAAAAA$. DNA strand cleavage assay to determine the cross-linking site within $5^I-TAATTA$sequence showed that bizelesin alkylates guanine. These results demonstrate that bizelesin is able to induce DNA ISC at guanine but not at cytosine or thymine. In addition, guanine adducts have been found to be susceptible to DNA strand cleavage by exposure to hot piperidine. The extent of DNA strand cleavage, however, was not 100% efficient in either neutral pH buffer or hot piperidine.

  • PDF

DNA Structural Perturbation Induced by the CPI-Derived DNA Interstrand Cross-linker : Molecular Mechanisms for the Sequence Specific Recognition

  • Park, Hyun-Ju
    • Archives of Pharmacal Research
    • /
    • 제24권5호
    • /
    • pp.455-465
    • /
    • 2001
  • The highly potent cytotoxic DNA-DNA cross-linker consists of two cyclopropa[c]pyrrolo[3,4-3]indol-4(5H)-ones insoles [(+)-CPI-I] joined by a bisamido pyrrole (abbreviated to "Pyrrole"). The Pyrrole is a synthetic analog of Bizelesin, which is currently in phase II clinical trials due to its excellent in vivo antitumor activity. The Pyrrole has 10 times more potent cytotoxicity than Bizelesin and mostly form DNA-DNA interstrand cross-links through the N3 of adenines spaced 7 bp apart. The Pyrrole requires a centrally positioned GC base pair for high cross-linking reactivity (i.e., $5^1$-T$AT_2$A*-$3^1$), while Bizelesin prefers purely AT-rich sequences (i.e., $5^1$-T$AT_4$A*-$3^1$, where /(equation omitted) represents the cross-strand adenine alkylation and A* represents an adenine alkylation) (Park et al., 1996). In this study, the high-field $^1$H-NMR and rMD studies are conducted on the 1 1-mer DNA duplex adduct of the Pyrrole where the 5′(equation omitted)TAGTTA*-3′sequence is cross-linked by the drug. A severe structural perturbation is observed in the intervening sequences of cross-linking site, while a normal B-DNA structure is maintained in the region next to the drug-modified adenines. Based upon these observations, we propose that the interplay between the bisamido pyrrole unit of the drug and central C/C base pair (hydrogen-bonding interactions) is involved in the process of cross-linking reaction, and sequence specificity is the outcome of those interactions. This study suggests a mechanism for the sequence specific cross-linking reaction of the Pyrrole, and provides a further insight to develop new DNA sequence selective and distortive cross-linking agents.

  • PDF