• Title/Summary/Keyword: Bivariate distribution function

Search Result 49, Processing Time 0.028 seconds

Bivariate Dagum distribution

  • Muhammed, Hiba Z.
    • International Journal of Reliability and Applications
    • /
    • v.18 no.2
    • /
    • pp.65-82
    • /
    • 2017
  • Abstract. Camilo Dagum proposed several variants of a new model for the size distribution of personal income in a series of papers in the 1970s. He traced the genesis of the Dagum distributions in applied economics and points out parallel developments in several branches of the applied statistics literature. The main aim of this paper is to define a bivariate Dagum distribution so that the marginals have Dagum distributions. It is observed that the joint probability density function and the joint cumulative distribution function can be expressed in closed forms. Several properties of this distribution such as marginals, conditional distributions and product moments have been discussed. The maximum likelihood estimates for the unknown parameters of this distribution and their approximate variance-covariance matrix have been obtained. Some simulations have been performed to see the performances of the MLEs. One data analysis has been performed for illustrative purpose.

  • PDF

System Reliability Estimation in Bivariate Pareto Model Affected by Common Stress : Bivariate Random Censored Data Case

  • Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.791-799
    • /
    • 2005
  • We consider two components parallel system in which the lifetimes have the bivariate Pareto model with bivariate random censored data. We assume that bivariate Pareto model is affected by common stress which is independent of the lifetimes of the components. We obtain estimators for the system reliability based on likelihood function and relative frequency. Also we construct approximated confidence intervals for the reliability based on maximum likelihood estimator and relative frequency estimator, respectively. Finally we present a numerical study.

  • PDF

SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.591-600
    • /
    • 2018
  • The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.

Nonparametric Estimation of the Bivariate Survival Function under Koziol-Green Model I

  • Ahn, Choon-Mo;Park, Sang-Gue
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.975-982
    • /
    • 2003
  • In this paper we considered the problem of estimating the bivariate survival distribution of the random vector (X, Y) when Y may be subject to random censoring but X is always uncensored. Adapting conditional Koziol-Green model, simplified estimator for bivariate survival function is proposed. We perform simulation to compare the proposed estimator with popular estimators and discussed the performance of it.

  • PDF

Some applications for the difference of two CDFs

  • Hong, Chong Sun;Son, Yun Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.237-244
    • /
    • 2014
  • It is known that the dierence in the length between two location parameters of two random variables is equivalent to the difference in the area between two cumulative distribution functions. In this paper, we suggest two applications by using the difference of distribution functions. The first is that the difference of expectations of a certain function of two continuous random variables such as the differences of two kth moments and two moment generating functions could be defined by using the difference between two univariate distribution functions. The other is that the difference in the volume between two empirical bivariate distribution functions is derived. If their covariance is estimated to be zero, the difference in the volume between two empirical bivariate distribution functions could be defined as the difference in two certain areas.

Estimation for a bivariate survival model based on exponential distributions with a location parameter

  • Hong, Yeon Woong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.921-929
    • /
    • 2014
  • A bivariate exponential distribution with a location parameter is proposed as a model for a two-component shared load system with a guarantee time. Some statistical properties of the proposed model are investigated. The maximum likelihood estimators and uniformly minimum variance unbiased estimators of the parameters, mean time to failure, and the reliability function of system are obtained with unknown guarantee time. Simulation studies are given to illustrate the results.

Multivariate empirical distribution functions and descriptive methods (다변량 경험분포함수와 시각적인 표현방법)

  • Hong, Chong Sun;Park, Jun;Park, Yong Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.87-98
    • /
    • 2017
  • The multivaiate empirical distribution function (MEDF) is defined in this work. The MEDF's expectation and variance are derived and we have shown the MEDF converges to its real distribution function. Based on random samples from bivariate standard normal distribution with various correlation coefficients, we also obtain MEDFs and propose two kinds of graphical methods to visualize MEDFs on two dimensional plane. One is represented with at most n stairs with similar arguments as the step function, and the other is described with at most n curves which look like bivariate quantile vector. Even though these two descriptive methods could be expressed with three dimensional space, two dimensional representation is obtained with ease and it is enough to explain characteristics of bivariate distribution functions. Hence, it is possible to visualize trivariate empirical distribution functions with three dimensional quantile vectors. With bivariate and four variate illustrative examples, the proposed MEDFs descriptive plots are obtained and explored.

On the maximum and minimum in a bivariate uniform distribution

  • Lee, Changsoo;Shin, Hyejung;Moon, Yeung-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1495-1500
    • /
    • 2015
  • We obtain means and variances of max {X, Y} and min {X, Y} in the underlying Morgenstern type bivariate uniform variables X and Y with same scale parameters and different scale parameters respectively. And we obtain the conditional expectations in the underlying Morgenstern type bivariate uniform variables. Here, we shall consider the conditional expectations to know the dependence of one variable on the other variable and we consider the behaviors of means and variances of max {X, Y} and min {X, Y} with respect to changes in means, variances, and the correlation coeffcient of the underlying Morgenstern type bivariate uniform variables.

Aspects of Dependence in Lomax Distribution

  • Asadian, N.;Amini, M.;Bozorgnia, A.
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.193-204
    • /
    • 2008
  • In this paper we study some positive dependence concepts, introduced by Caperaa and Genest (1990) and Shaked (1977b), for bivariate lomax distribution. In particular, we obtain some measures of association for this distribution and derive the tail-dependence coefficients by using copula function. We also compare Spearman's $\rho_s$ with Kendall's $\tau$ for bivariate lomax distribution.

SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.601-609
    • /
    • 2018
  • The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.