• 제목/요약/키워드: Bismuth-telluride

검색결과 50건 처리시간 0.022초

Bismuth Telluride 박막의 열전특성 개선을 위한 급속 열처리효과 (Improvement of Thermoelectric Properties of Bismuth Telluride Thin Films using Rapid Thermal Processing)

  • 김동호;이건환
    • 한국재료학회지
    • /
    • 제16권5호
    • /
    • pp.292-296
    • /
    • 2006
  • Effects of rapid thermal annealing of bismuth telluride thin films on their thermoelectric properties were investigated. Films with four different compositions were elaborated by co-sputtering of Bi and Te targets. Rapid thermal treatments in range of $300{\sim}400^{\circ}C$ were carried out during 10 minutes under the reducing atmosphere (Ar with 10% $H_2$). As the temperature of thermal treatment increased, carrier concentrations of films decreased while their mobilities increased. These changes were clearly observed for the films close to the stoichiometric composition. Rapid thermal treatment was found to be effective in improving the thermoelectric properties of $Bi_2Te_3$ films. Recrystallization of $Bi_2Te_3$ phase has caused the enhancement of thermoelectric properties, along with the decrease of the carrier concentration. Maximum values of Seebeck coefficient and power factor were obtained for the films treated at $400^{\circ}C$ (about $-128{\mu}V/K$ and $9{\times}10^{-4}\;W/K^2m$, respectively). With further higher temperature ($500^{\circ}C$), thermoelectric properties deteriorated due to the evaporation of Te element and subsequent disruption of film's structure.

Influence of Annealing Temperature on Structural and Thermoelectrical Properties of Bismuth-Telluride-Selenide Ternary Compound Thin Film

  • Kim, Youngmoon;Choi, Hyejin;Kim, Taehyeon;Cho, Mann-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.304.2-304.2
    • /
    • 2014
  • Chalcogenides (Te,Se) and pnictogens(Bi,Sb) materials have been widely investigated as thermoelectric materials. Especially, Bi2Te3 (Bismuth telluride) compound thermoelectric materials in thin film and nanowires are known to have the highest thermoelectric figure of merit ZT at room temperature. Currently, the thermoelectric material research is mostly driven in two directions: (1) enhancing the Seebeck coefficient, electrical conductivity using quantum confinement effects and (2) decreasing thermal conductivity using phonon scattering effect. Herein we demonstrated influence of annealing temperature on structural and thermoelectrical properties of Bismuth-telluride-selenide ternary compound thin film. Te-rich Bismuth-telluride-selenide ternary compound thin film prepared co-deposited by thermal evaporation techniques. After annealing treatment, co-deposited thin film was transformed amorphous phase to Bi2Te3-Bi2Te2Se1 polycrystalline thin film. In the experiment, to investigate the structural and thermoelectric characteristics of Bi2Te3-i2Te2Se1 films, we measured Rutherford Backscattering spectrometry (RBS), X-ray diffraction (XRD), Raman spectroscopy, Scanning eletron microscopy (SEM), Transmission electron microscopy (TEM), Seebeck coefficient measurement and Hall measurement. After annealing treatment, electrical conductivity and Seebeck coefficient was increased by defect states dominated by selenium vacant sites. These charged selenium vacancies behave as electron donors, resulting in carrier concentration was increased. Moreover, Thermal conductivity was significantly decreased because phonon scattering was enhanced through the grain boundary in Bi2Te3-Bi2Te2Se1 polycrystalline compound. As a result, The enhancement of thermoelectric figure-of-merit could be obtained by optimal annealing treatment.

  • PDF

방전플라즈마 소결법으로 제조된 Bismuth Antimony Telluride의 소결온도에 따른 열전특성 (Effect of Sintering Temperature on the Thermoelectric Properties of Bismuth Antimony Telluride Prepared by Spark Plasma Sintering)

  • 이경석;서성호;진상현;유봉영;정영근
    • 한국재료학회지
    • /
    • 제22권6호
    • /
    • pp.280-284
    • /
    • 2012
  • Bismuth antimony telluride (BiSbTe) thermoelectric materials were successfully prepared by a spark plasma sintering process. Crystalline BiSbTe ingots were crushed into small pieces and then attrition milled into fine powders of about 300 nm ~ 2${\mu}m$ size under argon gas. Spark plasma sintering was applied on the BiSbTe powders at 240, 320, and $380^{\circ}C$, respectively, under a pressure of 40 MPa in vacuum. The heating rate was $50^{\circ}C$/min and the holding time at the sintering temperature was 10 min. At all sintering temperatures, high density bulk BiSbTe was successfully obtained. The XRD patterns verify that all samples were well matched with the $Bi_{0.5}Sb_{1.5}Te_{3}$. Seebeck coefficient (S), electric conductivity (${\sigma}$) and thermal conductivity (k) were evaluated in a temperature range of $25{\sim}300^{\circ}C$. The thermoelectric properties of BiSbTe were evaluated by the thermoelectric figure of merit, ZT (ZT = $S^2{\sigma}T$/k). The grain size and electric conductivity of sintered BiSbTe increased as the sintering temperature increased but the thermal conductivity was similar at all sintering temperatures. Grain growth reduced the carrier concentration, because grain growth reduced the grain boundaries, which serve as acceptors. Meanwhile, the carrier mobility was greatly increased and the electric conductivity was also improved. Consequentially, the grains grew with increasing sintering temperature and the figure of merit was improved.

Chalcogenide계 열전재료

  • 김일호
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제24권7호
    • /
    • pp.10-17
    • /
    • 2011
  • 현재 개발 중인 Chalcogenide계 열전재료 중에서, 이방성 재료인 Thallium chalcogenide, Alkalimetal bismuth chalcogenide, Bismuth telluride와 등방성 재료인 Lead telluride, Silver antimony telluride, TAGS, LAST 및 SALT를 소개하였고, 이 재료들에 대한 연구 동향을 살펴보았다. Chalcogenide는 S, Se, Te 및 다른 원소와의 다양한 조합에 의해, 넓은 온도범위에서 열전재료로 응용하기 위한 밴드갭 에너지의 조절이 가능하다. 또한 합성공정에 따른 상변태, 석출 등 구조변화에 따른 열전특성의 변화를 기대할 수 있어 열전재료 개발 초기부터 활발한 연구가 진행되어 왔다. 과거의 전통적인 Chalcogenide계 열전재료뿐만 아니라, Chalcogenide계 열전 신소재에 대해서도 살펴보았다. Chalcogenide는 전자적, 광학적, 열적 성질 등 특성이 독특하고 변화가 무궁무진하여 아주 매력적이기 때문에, 앞으로도 계속 열전재료로서 각광받는 물질군으로 판단된다. 그림 11에 현재까지 ZT의 최댓값이 1이 넘는다고 보고된 열전재료의 성능지수를 요약하였다.

  • PDF

P형 열전분말의 수소환원처리가 상온열전특성에 미치는 영향 (Effect of Hydrogen Reduction Treatment on Room-Temperature Thermoelectric Performance of p-type Thermoelectric Powders)

  • 김경태;장경미;하국현
    • 한국분말재료학회지
    • /
    • 제17권2호
    • /
    • pp.136-141
    • /
    • 2010
  • Bismuth-telluride based $(Bi_{0.2}Sb_{0.8})_2Te_3$ thermoelectric powders were fabricated by two-step planetary milling process which produces bimodal size distribution ranging $400\;nm\;{\sim}\;2\;{\mu}m$. The powders were reduced in hydrogen atmosphere to minimize oxygen contents which cause degradation of thermoelectric performance by decreasing electrical conductivity. Oxygen contents were decreased from 0.48% to 0.25% by the reduction process. In this study, both the as-synthesized and the reduced powders were consolidated by the spark plasma sintering process at $350^{\circ}C$ for 10 min at the heating rate of $100^{\circ}C/min$ and then their thermoelectric properties were investigated. The sintered samples using the reduced p-type thermoelectric powders show 15% lower specific electrical resistivity ($0.8\;m{\Omega}{\cdot}cm$) than those of the as-synthesized powders while Seebeck coefficient and thermal conductivity do not change a lot. The results confirmed that ZT value of thermoelectric performance at room temperature was improved by 15% due to high electric conductivity caused by the controlled oxygen contents present at bismuth telluride materials.

Enhancing Electrical Properties of N-type Bismuth Telluride Alloys through Graphene Oxide Incorporation in Extrusion 3D Printing

  • Jinhee Bae;Seungki Jo ;Kyung Tae Kim
    • 한국분말재료학회지
    • /
    • 제30권4호
    • /
    • pp.318-323
    • /
    • 2023
  • The thermoelectric effect, which converts waste heat into electricity, holds promise as a renewable energy technology. Recently, bismuth telluride (Bi2Te3)-based alloys are being recognized as important materials for practical applications in the temperature range from room temperature to 500 K. However, conventional sintering processes impose limitations on shape-changeable and tailorable Bi2Te3 materials. To overcome these issues, three-dimensional (3D) printing (additive manufacturing) is being adopted. Although some research results have been reported, relatively few studies on 3D printed thermoelectric materials are being carried out. In this study, we utilize extrusion 3D printing to manufacture n-type Bi1.7Sb0.3Te3 (N-BST). The ink is produced without using organic binders, which could negatively influence its thermoelectric properties. Furthermore, we introduce graphene oxide (GO) at the crystal interface to enhance the electrical properties. The formed N-BST composites exhibit significantly improved electrical conductivity and a higher Seebeck coefficient as the GO content increases. Therefore, we propose that the combination of the extrusion 3D printing process (Direct Ink Writing, DIW) and the incorporation of GO into N-BST offers a convenient and effective approach for achieving higher thermoelectric efficiency.

RF 마그네트론 스퍼터링을 이용한 Bismuth Telluride 박막의 제조와 그 열전 특성 연구 (Preparation of Bismuth Telluride Thin Films using RF magnetron sputtering and Study on Their Thermoelectric Properties)

  • 김동호;이건환
    • 한국진공학회지
    • /
    • 제14권4호
    • /
    • pp.215-221
    • /
    • 2005
  • 비스무스와 텔루리움 타겟을 co-sputtering하여 열전특성을 지닌 비스무스 텔루라이드($Bi_2Te_3$) 박막을 제조하고, 증착온도에 따른 표면형상, 결정성, 그리고 전기적 특성의 변화를 조사하였다. 표면온도가 $290^{\circ}C$ 이상일 때, 박막의 표면에서 육각형상의 결정이 뚜렷이 관찰되었으며, X선 회절분석을 통하여 높은 증착온도에서 박막의 주된 구성물질이 rhombohedral 구조의 $Bi_2Te_3$ 결정상에서 hexagonal 구조의 BiTe 결정상으로 변하는 것을 확인하였다. 높은 증착온도에서 제조된 박막의 조성이 $Bi_2Te_3$의 화학양론비에서 벗어남으로 구조적 변화와 함께 전기적 특성도 변한다는 사실을 알 수 있었다. 제조된 비스무스 텔루라이드 박막의 열전특성을 파악하기 위해 제벡계수(Seebeck coefficient)를 측정하였다. 모든 시편이 n타입의 열전박막임을 확인하였으며, 증착온도 약 $225^{\circ}C$에서 열전특성의 최적값 (제벡계수: -55 $\mu$V/$K^{2}$, 열전성능인자: $3\times10^{-4}$ W/$k^{2}$m)이 얻어졌다. 그 이상의 온도에서 나타나는 열전 특성의 저하는 텔루리움의 증발에 따른 $Bi_{2}$$Te_{3}$ 열전박막의 텔루리움 함량 부족과 그에 따른 BiTe 결정상의 발생으로 이해된다.

Synthesis and Thermoelectric Properties of Carbon Nanotube-Dispersed Bi2Te3 Matrix Composite Powders by Chemical Routes

  • Kim, Kyung Tae;Son, Injoon;Ha, Gook Hyun
    • 한국분말재료학회지
    • /
    • 제20권5호
    • /
    • pp.345-349
    • /
    • 2013
  • Carbon nanotube-dispersed bismuth telluride matrix (CNT/$Bi_2Te_3$) nanopowders were synthesized by chemical routes followed by a ball-milling process. The microstructures of the synthesized CNT/$Bi_2Te_3$ nanopowders showed the characteristic microstructure of CNTs dispersed among disc-shaped $Bi_2Te_3$ nanopowders with as an average size of 500 nm in-plane and a few tens of nm in thickness. The prepared nanopowders were sintered into composites with a homogeneous dispersion of CNTs in a $Bi_2Te_3$ matrix. The dimensionless figure-of-merit of the composite showed an enhanced value compared to that of pure $Bi_2Te_3$ at the room temperature due to the reduced thermal conductivity and increased electrical conductivity with the addition of CNTs.

진공밀폐 용해법으로 제조된 Bi2Te2.85Se0.15:Im의 열전특성

  • 이고은;음아영;김일호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.450.1-450.1
    • /
    • 2014
  • 열에너지를 전기에너지로 변환하거나 또는 전기에너지를 열에너지로 직접 변환하는 열전 변환 기술이 주목받고 있다. 열전 변환 효율은 성능지수($ZT={\alpha}^2{\sigma}T{\kappa}^{-1}$)로 평가되며, 여기서 ${\alpha}$, ${\sigma}$, ${\kappa}$, T는 각각 열전재료의 제벡계수, 전기전도도, 열전도도 및 절대온도이다. 따라서 우수한 열전재료는 높은 제벡계수와 전기전도도 그리고 낮은 열전도도를 가져야 한다. Bismuth telluride는 상온영역에서 성능지수가 높은 재료로서, $Bi_2Te_3$$Bi_2Se_3$와 고용체를 형성하면 원자의 치환으로 포논산란에 의해 열전도도가 낮아지고, 도핑으로 전기적 특성을 조절하여 성능지수를 향상시킬 수 있다. 본 연구에서는 진공밀폐 용해법으로 $Bi_2Te_{2.85}Se_{0.15}:I_m$ (m=0.0~0.045) 고용체를 합성하여 상분석을 실시하고, 전자 이동특성 및 열전 특성을 평가하였다.

  • PDF