• Title/Summary/Keyword: Bismuth telluride

Search Result 50, Processing Time 0.032 seconds

Electrical Resistivity and Charge Density of Bismuth Telluride Doped with Erbium

  • Yeom, Tae-Ho
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.149-151
    • /
    • 2005
  • The electric properties of a single crystal bismuth telluride doped with a small concentration of Erbium, $Bi_{z-x}Er_xTe_3$ with x = 0.002, are investigated as a function of temperature. The resistivity was obtained by using the van der Pauw method. The measured electrical resistivity is 78 ${\mu}{\Omega}cm$ at 4.2 K. The charge density of $Bi_{z-x}Er_xTe_3$ is found to be $2{\times}10^{19}/cm^3$ at 4.2 K. It turns out that $Bi_{z-x}Er_xTe_3$ is a p-type semiconductor. It is discussed that the high mobility and less density support that $Bi_{z-x}Er_xTe_3$ is a potential sensor with high energy resolution. Comparison with an established material (i.e. Au:Er alloy) is also discussed.

Characteristics of electrodeposited bismuth telluride thin films with different crystal growth by adjusting electrolyte temperature and concentration

  • Yamaguchi, Masaki;Yamamuro, Hiroki;Takashiri, Masayuki
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1513-1522
    • /
    • 2018
  • Bismuth telluride ($Bi_2Te_3$) thin films were prepared with various electrolyte temperatures ($10^{\circ}C-70^{\circ}C$) and concentrations [$Bi(NO_3)_3$ and $TeO_2:1.25-5.0mM$] in this study. The surface morphologies differed significantly between the experiments in which these two electrodeposition conditions were separately adjusted even though the applied current density was in the same range in both cases. At higher electrolyte temperatures, a dendrite crystal structure appeared on the film surface. However, the surface morphology did not change significantly as the electrolyte concentration increased. The dendrite crystal structure formation in the former case may have been caused by the diffusion lengths of the ions increasing with increasing electrolyte temperature. In such a state, the reactive points primarily occur at the tops of spiked areas, leading to dendrite crystal structure formation. In addition, the in-plane thermoelectric properties of $Bi_2Te_3$ thin films were measured at approximately 300 K. The power factor decreased drastically as the electrolyte temperature increased because of the decrease in electrical conductivity due to the dendrite crystal structure. However, the power factor did not strongly depend on the electrolyte concentration. The highest power factor [$1.08{\mu}W/(cm{\cdot}K^2$)] was obtained at 3.75 mM. Therefore, to produce electrodeposited $Bi_2Te_3$ films with improved thermoelectric performances and relatively high deposition rates, the electrolyte temperature should be relatively low ($30^{\circ}C$) and the electrolyte concentration should be set at 3.75 mM.

Performance of the heat flux sensor using thermoelectric semiconductor material (半導體 熱電材料를 利용한 熱流束 測定 센서의 性能)

  • 황동원;정평석;주해호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.622-629
    • /
    • 1988
  • In order to improve the sensitivity of the wafer type heat flux sensor, some heat flux sensors were manufactured and examined by using thermoelectric semiconductor material (bismuth telluride) whose Seebck coefficient is much larger than those of metallic thermocouple materials. Because the thermoelectric element cannot be bended or welded, a peculiar sensor structure and manufacturing process were designed. As a result, it is revealed that the characteristic sensitivity of the manufactured sensor is about 10 times larger than that of marketed sensor even though there are some troubles in stiffness for reciprocal use. If we make this kind of sensors smaller and thinner, it will be a useful method to measure the local heat flux from the surface of complex configuration.

Power generation characteristics of thermoelectric module for waste heat energy harvesting (폐열에너지 하베스팅을 위한 열전모듈 발전특성 연구)

  • Yun, Jin Chul;Ju, Jung Myoung;Hwang, Jong Hyun;Park, Seong Jin
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.184-189
    • /
    • 2016
  • Recently, due to limitation of $CO_2$ gas emission and increase of demand to reduce energy consumption, lots of researches are conducted to harvest wasted heat energy with a thermoelectric module to produce electricity by Seebeck effect. This study was conducted to analyze characteristics of the thermoelectric module to apply for a heat energy harvesting device. Thermoelectric module composed of bismuth telluride was tested with various temperature conditions to analyze thermoelectric behavior of the module. Power generation efficiency of the thermoelectric module for various temperature condition was analysed with both experimental and theoretical methods. From the results, an optimum condition to harvest wasted heat energy with the thermoelectric module more efficiently was proposed.

Fabrication and Thermoelectric Properties of Carbon Nanotube/Bi2Te3 Composites (탄소나노튜브가 분산된 비스무스 텔루라이드 기지 복합재료의 제조 및 열전특성)

  • Kim, Kyung-Tae;Jang, Kyeong-Mi;Kim, Kyong-Ju;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.107-112
    • /
    • 2010
  • Carbon-nanotube-embedded bismuth telluride (CNT/$Bi_2Te_3$) matrix composites were fabricated by a powder metallurgy process. Composite powders, whereby 5 vol.% of functionalized CNTs were homogeneously mixed with $Bi_2Te_3$ alloying powders, were successfully synthesized by using high-energy ball milling process. The powders were consolidated into bulk CNT/$Bi_2Te_3$ composites by spark plasma sintering process at $350^{\circ}C$ for 10 min. The fabricated composites showed the uniform mixing and homogeneous dispersion of CNTs in the $Bi_2Te_3$ matrix. Seebeck coefficient of CNT/$Bi_2Te_3$ composites reveals that the composite has n-type semiconducting characteristics with values ranging $-55\;{\mu}V/K$ to $-95\;{\mu}V/K$ with increasing temperature. Furthermore, the significant reduction in thermal conductivity has been clearly observed in the composites. The results showed that CNT addition to thermoelectric materials could be useful method to obtain high thermoelectric performance.

Strong Correlation Effect by the Rare Earth Substitution on Thermoelectric Material Bi2Te3 ; in GGA+U Approach

  • Quang, Tran Van;Kim, Miyoung
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.05a
    • /
    • pp.19-20
    • /
    • 2013
  • Thermoelectic properties of the typical thermoelectric host materials, the tellurides and selenides, are known to be noticeably changed by their volume change due to the strain [1]. In the bismuth telluride ($Bi_2Te_3$) crystal, a substitution of rare-earth element by replacing one of the Bi atoms may cause the change of the lattice parameters while remaining the rhombohedral structure of the host material. Using the first-principles approach by the precise full potential linearized augmented plane wave (FLAPW) method [2], we investigated the Ce substitution effect on the thermoelectric transport coefficients for the bismuth telluride, employing Boltzmann's equation in a constant relaxation-time approach fed with the FLAPW wave-functions within the rigid band approximation. Depending on the real process of re-arrangement of atoms in the cell to reach the equilibrium state, $CeBiTe_3$ was found to manifest a metal or a narrow bandgap semiconductor. This feature along with the strong correlation effect originated by the 4f states of Ce affect significantly on the thermoelectric properties. We showed that the position of the strongly localized f-states in energy scale (Fig. 1, f-states are shaded) was found to alter critically the transport properties in this material suggesting an opportunity to improve the thermoelectric efficiency by tuning the external strain which may changing the location of the f-sates.

  • PDF

Influence of Metal-Coating Layer on an Electrical Resistivity of Thick-Film-Type Thermoelectric Modules Fabricated by a Screen Printing Process (스크린 프린팅 공정에 의해 제조된 열전후막모듈의 전기저항에 미치는 금속코팅층의 영향)

  • Kim, Kyung-Tae;Koo, Hye-Young;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.423-429
    • /
    • 2011
  • Thermoelectric-thick films were fabricated by using a screen printing process of n and p-type bismuth-telluride-based pastes. The screen-printed thick films have approximately 30 ${\mu}m$ in thickness and show rough surfaces yielding an empty gap between an electrode and the thick film. The gap might result in an increase of an electrical resistivity of the fabricated thick-film-type thermoelectric module. In this study, we suggest a conductive metal coating onto the surfaces of the screen-printed paste in order to reduce the contact resistance in the module. As a result, the electrical resistivity of the thermoelectric module having a gold coating layer was significantly reduced up to 30% compared to that of a module without any metal coating. This result indicates that an introduction of conductive metal layers is effective to decrease the contact resistivity of a thick-film-typed thermoelectric module processed by screen printing.

Spherical Bi2Te3 Powder Synthesized by Oxide-Reduction Process via Ultrasonic Spray Pyrolysis (초음파 분무 열분해법에 의한 산화물 환원 공정의 구형 Bi2Te3 분말 합성)

  • Song, Chul-Han;Jang, Dae-Hwan;Jin, Yun-Ho;Kong, Man-Sik
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.114-118
    • /
    • 2017
  • Bismuth telluride ($Bi_2Te_3$) and its alloys are well-known thermoelectric materials for ambient temperature applications. In this study, the dissolved Bi-Te precursor solution was used to synthesis metallic $Bi_2Te_3$ powder via ultrasonic spray pyrolysis and reduction process. The droplets of the Bi-Te precursor solution were decomposed to Bi-Te oxide powders by ultrasonic spray pyrolysis. The spherical $Bi_2Te_3$ powders were synthesized by reduction reaction in atmosphere of hydrogen gas at the temperature above $375^{\circ}C$ for 6h. The reduced $Bi_2Te_3$ powders have a mean particle size of $1.5{\mu}m$. The crystal structure of the powder was evaluated by X-Ray diffraction(XRD), and the microstructure with size and shape powders was observed by fieldemission scanning electron microscope(FE-SEM) and transmission electron microscope(TEM).

First-principles Study on the Magnetic Properties of Gd doped Bithmuth-Telluride (Gd 도핑된 비스무스 텔루라이드의 자기적 성질에 대한 제일원리 계산 연구)

  • Van Quang, Tran;Kim, Miyoung
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.39-44
    • /
    • 2016
  • Determination of the structural, electronic, and magnetic properties of the magnetically doped bismuth-telluride alloys are drawing lots of interest in the fields of the thermoelectric application as well as the research on magnetic interaction and topological insulator. In this study, we performed the first-principles electronic structure calculations within the density functional theory for the Gd doped bismuth-tellurides in order to study its magnetic properties and magnetic phase stability. All-electron FLAPW (full-potential linearized augmented plane-wave) method is employed and the exchange correlation potentials of electrons are treated within the generalized gradient approximation. In order to describe the localized f-electrons of Gd properly, the Hubbard +U term and the spin-orbit coupling of the valence electrons are included in the second variational way. The results show that while the Gd bulk prefers a ferromagnetic phase, the total energy differences between the ferromagnetic and the antiferromagnetic phases of the Gd doped bismuth-telluride alloys are about ~1meV/Gd, indicating that the stable magnetic phase may be changed sensitively depending on the structural change such as defects or strains.