• 제목/요약/키워드: Bismuth substitution

검색결과 21건 처리시간 0.026초

PMW-PNN-PZT 세라믹스의 Bismuth 치환에 따른 미세구조 및 압전 특성 (Microstructure and Piezoelectric Properties of PMW-PNN-PZT Ceramics with Bismuth Substitution)

  • 김용진;류주현;신동찬
    • 한국전기전자재료학회논문지
    • /
    • 제29권6호
    • /
    • pp.332-336
    • /
    • 2016
  • In this study, in order to develop the composition ceramics for ultrasonic sensor with high $d_{33}*g_{33}$, $Pb_{1-3x/2}Bix(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_{0.09}(Zr_{0.5}Ti_{0.5})_{0.88}O_3$(PMW-PNN-PZT) system ceramics were prepared using CuO as sintering aids. And then, their microstructure, piezoelectric and dielectric characteristics were systemetically investigated with bismuth substitution. The PMW-PNN-PZT ceramic specimens could be sintered at sintering temperature of $940^{\circ}C$ by adding sintering aids. At x=0.015 specimen, the density, electromechanical coupling factor($k_p$), dielectric constant, piezoelectric constant($d_{33}$) and piezoelectric figure of merit($d_{33}*g_{33}$) indicated the optimal properties of $7.90g/cm^3$, 0.67, 2,511, 628 pC/N, and $17.7pm^2/N$, respectively, for duplex ultrasonic sensor application.

Strong Correlation Effect by the Rare Earth Substitution on Thermoelectric Material Bi2Te3 ; in GGA+U Approach

  • Quang, Tran Van;Kim, Miyoung
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2013년도 임시총회 및 하계학술연구발표회
    • /
    • pp.19-20
    • /
    • 2013
  • Thermoelectic properties of the typical thermoelectric host materials, the tellurides and selenides, are known to be noticeably changed by their volume change due to the strain [1]. In the bismuth telluride ($Bi_2Te_3$) crystal, a substitution of rare-earth element by replacing one of the Bi atoms may cause the change of the lattice parameters while remaining the rhombohedral structure of the host material. Using the first-principles approach by the precise full potential linearized augmented plane wave (FLAPW) method [2], we investigated the Ce substitution effect on the thermoelectric transport coefficients for the bismuth telluride, employing Boltzmann's equation in a constant relaxation-time approach fed with the FLAPW wave-functions within the rigid band approximation. Depending on the real process of re-arrangement of atoms in the cell to reach the equilibrium state, $CeBiTe_3$ was found to manifest a metal or a narrow bandgap semiconductor. This feature along with the strong correlation effect originated by the 4f states of Ce affect significantly on the thermoelectric properties. We showed that the position of the strongly localized f-states in energy scale (Fig. 1, f-states are shaded) was found to alter critically the transport properties in this material suggesting an opportunity to improve the thermoelectric efficiency by tuning the external strain which may changing the location of the f-sates.

  • PDF

Effects of Lanthanides-Substitution on the Ferroelectric Properties of Bismuth Titanate Thin Films Prepared by MOCVD Process

  • Kim, Byong-Ho;Kang, Dong-Kyun
    • 한국세라믹학회지
    • /
    • 제43권11호
    • /
    • pp.688-692
    • /
    • 2006
  • Ferroelectric lanthanides-substituted $Bi_4Ti_3O_{12}$ $(Bi_{4-x}Ln_xTi_3O_{12}, BLnT)$ thin films approximately 200 nm in thickness were deposited by metal organic chemical vapor deposition onto Pt(111)/Ti/SiO$_2$/Si(100) substrates. Many researchers reported that the lanthanides substitution for Bi in the pseudo-perovskite layer caused the distortion of TiO$_6$ octahedron in the a-b plane accompanied with a shift of the octahedron along the a-axis. In this study, the effect of lanthanides (Ln=Pr, Eu, Gd, Dy)-substitution and crystallization temperature on their ferroelectric properties of bismuth titanate $(Bi_4Ti_3O_{12}, BIT)$ thin films were investigated. As BLnT thin films were substituted to lanthanide elements (Pr, Eu, Gd, Dy) with a smaller ionic radius, the remnant polarization (2P$_r$) values had a tendency to increase and made an exception of the Eu-substituted case because $Bi_{4-x}Eu_xTi_3O_{12}$ (BET) thin films had the smaller grain sizes than the others. In this study, we confirmed that better ferroelectric properties can be expected for films composed of larger grains in bismuth layered peroskite materials. The crystallinity of the thin films was improved and the average grain size increased as the crystallization temperature,increased from 600 to 720$^{\circ}C$. Moreover, the BLnT thin film capacitor is characterized by well-saturated polarization-electric field (P-E) curves with an increase in annealing temperature. The BLnT thin films exhibited no significant degradation of switching charge for at least up to $1.0\times10^{11}$ switching cycles at a frequency of 1 MHz. From these results, we can suggest that the BLnT thin films are the suitable dielectric materials for ferroelectric random access memory applications.

Fabrication of Bismuth- and Aluminum-Substituted Dysprosium Iron Garnet Films for Magneto-Optic Recording by Pyrolysis and Their Magnetic and Magneto-Optic Properties

  • Cho, Jae-Kyong
    • The Korean Journal of Ceramics
    • /
    • 제1권2호
    • /
    • pp.91-95
    • /
    • 1995
  • Polycrystalline bismuth- and aluminum- substituted dysporsium and yttrium iron garnet (Bi2R3-xAlyFe5-yO12, R=Dy or Y, $0\leqx\leq3, \; 0\leqy\leq3$) films have been prepared by pyrolysis. The crystallization temperatures, the solubility limit of bismuth ions into the garnet phase, and magnetic and magneto-optic properties of the films have been investigated as a function of bismuth and aluminum concentration. It was found that the crystallization temperatures as a function of bismuth and aluminum concentration. It was found that the crystallization temperatures of these films rapidly decreased as bismuth concentration. It was found that the crystallization temperatures of these films rapidly decreased as bismuth concentration (x) increased up to x=1.5 and then remained temperatures of these films rapidly decreased as bismuth concentration (x) increased up to x=1.5 and then remained unchanged at x>1.5, whereas, showed no changes as aluminum concentration (y) increased up to y=1.0 and then gradually increased at y>1.0. The solubility limit of bismuth ions was x=1.8 when y=0 but increased to x=2.3 when y=1.0. It was demonstrated that the magnetic and magneto-optic properties of the dysprosium iron garnet films could be tailored by bismuth and aluminum substitution suitable for magneto-optic recording as follows. The saturation magnetization and coercivity data obtained for the films indicated that the film composition at which the magnetic compensation temperature became room temperature was y=1.2 when x=1.0. Near this composition the coercivity and the squareness of the magnetic hysteresis loop of the films were several kOe and unit, respectively. The Curie temperatures of the films increased with the increase of x but decreaed with the increase of y, and was 150-$250^{\circ}C$ when x=1.0 and y=0.6-1.4. The Faraday rotation at 633 nm of the films increased as x increased but decreased as y increased, and was 1 deg/$\mu\textrm{m}$ when x=1.0 and y=1.0. Based on the data obtained, the appropriate film composition for magneto-optic recording was estimated as near x=1.0 and y=1.0 or $BiDy_2AlFe_4O_{12}$.

  • PDF

Tb3-xBixFe5O12(x=0.5, 0.75, 1.0, 1.25)의 자기적 특성 연구 (Magnetic Properties of Bismuth Substituted Terbium Iron Garnet)

  • 박일진;김철성
    • 한국자기학회지
    • /
    • 제16권5호
    • /
    • pp.245-248
    • /
    • 2006
  • Sol-gel법을 이용하여 단일상을 갖는 $Tb_{3-x}Bi_xFe_5O_{12}$ 분말 시료를 제조하였으며, 그 결정학적 및 자기적 특성을 x-선 회절법(XRD), 진동 시료 자화율 측정법(VSM), $M\"{o}ssbauer$ 분광법으로 연구하였다. XRD 분석 결과 결정구조는 Ia3d의 공간그룹을 갖는 cubic 구조임을 알 수 있었고, Bismuth의 치환량이 x=0.5, 0.75, 1.0 및 1.25로 증가할수록 격자상수가 각각 $a_0=12.466{\AA},\;12.487{\AA},\;12.499{\AA},\;12.518{\AA}$으로 선형적으로 증가함을 확인할 수 있었다. VSM을 이용한 온도에 따른 자기모멘트 측정 결과 Bismuth의 치환량이 증가하면 $N\'{e}el$ 온도는 증가하며 compensation 온도는 감소함을 확인할 수 있었다. 또한 field cooled 조건에서 비정상적인 음의 자화값이 관측되었다. $M\"{o}ssbauer$ 스펙트럼은 4.2 K에서부터 $N\'{e}el$ 온도까지 측정하였으며, 분석 결과 상온에서 모든 시료의 이성질체 이동치의 값은 평균적으로 0.27mm/s로 철의 이온상태가 +3가 임을 확인할 수 있었다.

희토류원소(Y, Nd, Sm, Gd)의 치환에 의한 $Bi_4Ti_3O_{12}$의 결정화학 및 유전물성 (Crystal Chemistry and Dielectric Properties of $Bi_4Ti_3O_{12}$ by the Substitution of Rare Earth Elements (Y, Nd, Sm, Gd))

  • 고태경;방규석
    • 한국세라믹학회지
    • /
    • 제32권10호
    • /
    • pp.1178-1188
    • /
    • 1995
  • Bi4Ti3O12 (BIT) and its rare earth (Y, Nd, Sm, Gd)-substituted derivatives were synthesized using a sol-gel method to investigate their microstructures, cystal structures and electrical properties depending on the subsituted elemetns. Nd- or Sm-substitution into BIT appeared to be favorable, while Y- or Gd-substitution occurred with a pyrochlore phase. This suggests that a smaller trivalent rare earth ion may not be favorable in the structure of BIT. The rare earth derivatives showed that their particle sizes and shapes were considerably different depending on the kinds of substituted elements. Y-substitution resulted in developing a relatively even particle size and a dense microstructure. In structure, they may be similar to the pseudo-orthorhombic BIT but close to a paraelectric tetragonal phase. Their a (or b) axes were shortened, compared to the one of BIT. Such a distortion may result a decrease in the tilting of TiO6. BIT and the derivatives showed that their dielectric constants and losses were 40~120 and less than 0.03, respectively in the frequency range of 1~10 MHz. The dielectric loss of Y-substituted derivative was the lowest one and changed a little to frequency. Curie points were observed in all the derivatives like BIT to suggest that they would be ferroelectric. The temperature stability of the delectric properties of the derivatives below the Curie points were relatively better than the one of BIT.

  • PDF

Partial Substitution of Copper with Nickel for the Superconducting Bismuth Compound and Its Effect on the Physical and Electrical Properties

  • Kareem Ali Jasim;Riyam Abd Al-Zahra Fadil;Kassim Mahdi Wadi;Auday Hattem Shaban
    • 한국재료학회지
    • /
    • 제33권9호
    • /
    • pp.360-366
    • /
    • 2023
  • This study focuses on how the partial substitution of copper by nickel nanoparticles affects the electrical and structural properties of the Bi2Ba2Ca2Cu2.9Ni0.1O10+δ, Bi2Ba2Ca2Cu2.8Ni0.2O10+δ and Bi2Ba2Ca2Cu2.6Ni0.4O10+δ compounds. Approximate values of crystallization size and crystallization percentage for the three compounds were calculated using the Scherer, modified Scherer, and Williamson-Hall methods. A great similarity was observed in the crystal size values from the Scherer method, 243.442 nm, and the Williamson-Hall method, 243.794 nm for the second sample. At the same time this sample exhibited the highest crystal size value for the three methods. In the examination of electrical properties, the sample with 0.1 partial substitution, Bi2Ba2Ca2Cu2.9Ni0.1O10+δ was determined to be the best with a critical temperature of 100 K and an energy gap of 6.57639 × 10-21 MeV. Using the SEM technique to analyze the structural morphology of the three phases, it was discovered that the size of the granular forms exceeds 25 nm. It was determined that the samples' shapes alter when nickel concentration rises. The patterns that reveal the distribution of the crystal structure also exhibit clear homogeneity.

Examination of the Impact of Substituting Germanium for Bismuth on the Energy Density and Electrical Conductivity of the Se60Ge40-xBix Alloy

  • Kareem Ali Jasim;Haider Sahi Hussein;Shaymaa Hashim Aneed;Ebtisam Mohammed Taqi Salman
    • 한국재료학회지
    • /
    • 제34권6호
    • /
    • pp.267-274
    • /
    • 2024
  • In this study, four different samples of Se60Ge40-xBix chalcogenides glasses were synthesized by heating the melt for 18 h in vacuum Pyrex ampoules (under a 10-4 Torre vacuum), each with a different concentration (x = 0, 10, 15, and 20) of high purity starting materials. The results of direct current (DC) electrical conductivity measurements against a 1,000/T plot for all chalcogenide samples revealed two linear areas at medium and high temperatures, each with a different slope and with different activation energies (E1 and E2). In other words, these samples contain two electrical conduction mechanisms: a localized conduction at middle temperatures and extended conduction at high temperatures. The results showed the local and extended state parameters changed due to the effective partial substitution of germanium by bismuth. The density of extended states N(Eext) and localized states N(Eloc) as a function of bismuth concentration was used to gauge this effect. While the density of the localized states decreased from 1.6 × 1014 to 4.2 × 1012 (ev-1 cm-3) as the bismuth concentration increased from 0 to 15, the density of the extended states generally increased from 3.552 × 1021 to 5.86 × 1021 (ev-1 cm-3), indicating a reduction in the mullet's randomness. This makes these alloys more widely useful in electronic applications due to the decrease in the cost of manufacturing.

Effect of Ta-Substitution on the Ferroelectric and Piezoelectric Properties of Bi0.5/(Na0.82K0.18)0.5TiO3 Ceramics

  • Do, Nam-Binh;Lee, Han-Bok;Yoon, Chang-Ho;Kang, Jin-Kyu;Lee, Jae-Shin;Kim, Ill-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권2호
    • /
    • pp.64-67
    • /
    • 2011
  • The effect of Ta substitution on the crystal structure, ferroelectric, and piezoelectric properties of $Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}Ti_{1-x}Ta_xO_3$ ceramics has been investigated. The Ta doping resulted in a transition from coexistence of ferroelectric tetragonal and rhombohedral phases to an electrostrictive pseudocubic phase, leading to degradations of the remnant polarization, coercive field, and piezoelectric coefficient $d_{33}$. However, the electricfield-induced strain was significantly enhanced by the Ta substitution-induced phase transition and reached a highest value of $S_{max}/E_{max}$ = 566 pm/V under an applied electric field 6 kV/mm when 2% Ta was substituted on Ti sites. The abnormal enhancement in strain was attributed to the pseudocubic phase with high electrostrictive constants.