• 제목/요약/키워드: Bipropellant Propulsion System

검색결과 26건 처리시간 0.03초

우주추진용 모노메틸하이드라진 반응에 대한 주요 해외연구 동향 조사 Part I : 모노메틸하이드라진의 열분해 반응 (A Review on Major Foreign Research Trend of Monomethylhydrazine Reaction for Space Propulsion Part I : Thermal Decomposition Reaction of Monomethylhydrazine)

  • 장요한;이균호
    • 항공우주시스템공학회지
    • /
    • 제10권1호
    • /
    • pp.66-73
    • /
    • 2016
  • Space propulsion system produces required thrust for satellites and space launch vehicles by using chemical reactions of a liquid fuel and a liquid oxidizer typically. For example, monomethylhydrazine-dinitrogen tetroxide, liquid hydrogen-liquid oxygen and RP-1-liquid oxygen are conventional combinations of liquid propellants used for the liquid propulsion system. Among several liquid propellants, the monomethylhydrazine is expecially preferred for a satellite fuel due to its better storability in liquid phase during a relatively long mission period under a space environment. Thus, a development importance of a bipropellant system using the monomethylhydrazine fuel is recognized recently as the national space program proceeds on a large scale. The objective of the present study is to review a foreign research trend of a thermal decomposition reaction of monomethyhydrazine to understand a fundamental basis of its chemical reaction to prepare for domestic development in future.

H2O2-케로신 로켓을 초기 가속장치로 갖는 새로운 램젯 추진기관 (Novel Ramjet Propulsion System with H2O2-Kerosene Rocket as an Initial Accelerator)

  • 박근홍;임하영;권세진
    • 한국항공우주학회지
    • /
    • 제36권5호
    • /
    • pp.491-496
    • /
    • 2008
  • 본 연구에서는 RBCC (Rocket Based Combined Cycle)엔진이나 기존 램제트 추진기관의 초기 추력 제공에 과산화수소 가스발생기를 이용하는 새로운 추진시스템을 제안하였고, 기초 연구 수행으로서 촉매 분해된 과산화수소 제트에 케로신을 분사하여 자연발화 및 연소 특성을 연구하였다. 과산화수소는 촉매 베드를 통하여 분해된 후 축소노즐을 통해 연소실로 분사됐으며 이 제트에 인젝터를 통하여 수직으로 케로신을 액상으로 분무하였다. 연소실내에서의 온도와 압력을 측정하여 점화를 확인하고 자연발화 특성을 조사하였다. 400°C의 연소실 온도와 연료와 산화제 혼합비 0.6이상에서 자연발화와 안정적인 연소가 가능하였다. 이 결과를 통하여 램제트의 새로운 초기 가속장치의 가능성을 확인할 수 있었다.

메탄/산소 이원액체추진제 로켓엔진 기술개발 동향 (State of the Art in the Development of Methane/Oxygen Liquid-bipropellant Rocket Engine)

  • 김정수;정훈;김종현
    • 한국추진공학회지
    • /
    • 제17권6호
    • /
    • pp.120-130
    • /
    • 2013
  • 최근 들어 차세대 추진제로서 각광을 받고 있는 메탄의 성능특성을 분석하고, 메탄/산소 로켓엔진의 기술개발 동향을 조사하였다. 로켓연료로서의 액체메탄은 무독성, 경제성, 우수한 재생냉각성능, 그리고 행성의 현지자원활용(ISRU) 가능성 등과 같은 여러 유리한 특성을 가지며, 액체산소와의 조합시 높은 비추력 확보 및 시스템 경량화가 가능하다. 이러한 이유로, 메탄/산소 엔진에 대한 연구가 활발하게 진행되고 있기는 하지만 그 기술성숙도가 아직은 그리 높지 않은 것으로 확인되는 바, 메탄 로켓엔진 개발을 통하여 우주기술 선진국과의 기술격차 해소가 필요한 시점이라고 판단된다.

친환경 추진제로서의 아산화질소 연료 혼합물 개발동향 (State of the Art in the Development of Nitrous Oxide Fuel Blend as Green propellant)

  • 권민찬;양준서;임성택
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.1061-1067
    • /
    • 2017
  • 1960년대 이후부터 하이드라진($N_2H_4$)은 로켓, 인공위성 또는 심우주 임무용 추진제로 사용되어 왔다. 하지만 하이드라진의 높은 독성과 운영비용으로 이온성 액체 추진제(ADM, HAN) 및 아산화질소 연료 혼합물(NOFB)과 같은 친환경 추진제에 대한 요구가 증가하고 있다. 아산화질소 연료 혼합물(NOFB)은 이원추진제가 갖는 높은 성능과 단일추진제의 단순한 공급시스템 장점을 모두 갖는 추진제로서, 적절한 취급방법과 설계가 적용된다면 전통적인 하이드라진 추진 시스템을 대체할 만한 추진제로 사용가능할 것이다.

  • PDF

이원 추진 시스템 고압 시험시의 파열 안전성 고찰 (Rupture Safety Assesment of Bipropellant Propulsion System at High Pressure Testing)

  • 장세명;한조영
    • 한국항공우주학회지
    • /
    • 제38권6호
    • /
    • pp.605-611
    • /
    • 2010
  • 정지궤도위성인 통신해양기상위성은 2010년 발사 예정인데, 관련된 일련의 성능 시험중에는 수백 기압의 헬륨 가스로 채워진 추진계 탱크의 고압 내구 시험도 포함되어 있다. 이 논문에서는 시험 시스템에 최악의 사고가 일어날 경우를 대비하여 그 위험도를 계산하여 보았다. 두 가지 시나리오가 있는데, 첫째는 310 기압의 헬륨 탱크가 현재의 시험챔버에서 일시에 파열하는 경우, 둘째는 116 기압의 감압된 헬륨 탱크가 방탄유리로 보호되고 있는 방에서 파열하는 경우를 가정해 보았다. 폭발파 전파 이론과 전산 수치 모사를 통하여, 제한된 공간에서 반사되는 파동의 역학을 매우 복잡한 비정상 유동 물리에 대하여 분석하였다.

마이크로 추력장치용 과산화수소 촉매 반응기 (Catalytic Reactor of Hydrogen Peroxide for a Micro Thruster)

  • 이대훈;조정훈;권세진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.237-240
    • /
    • 2002
  • Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant, $H_2O_2$, a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally, $H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst, $La_{0.8}Sr_{0.2}CoO_3$, and measurement of its propellant decomposition performance in a test reactor are described.

  • PDF