• 제목/요약/키워드: Biphenyl dimethyl dicarboxylate(DDB)

검색결과 27건 처리시간 0.022초

비페닐디메칠디카르복실레이트의 비수성 경구 액상제제의 설계 및 위장관 투과성 (Design and Gastrointestinal Permeation of Non-aqueous Biphenyl Dimethyl Dicarboxylate Oral Liquid Preparations)

  • 김혜진;전인구
    • Journal of Pharmaceutical Investigation
    • /
    • 제30권2호
    • /
    • pp.119-125
    • /
    • 2000
  • In an attempt to develop a non-aqueous liquid formulation of practically insoluble biphenyl dimethyl dicarboxylate (DDB), dissolution and permeation studies were performed. Various non-aqueous DDB solutions were formulated and filled into empty hard capsules. Dissolution rates of a new formulation were compared with those of commercially available DDB preparations using one and eight dose units. Dissolution rates after 2 hr of DDB tablets (DDB 25 mg), hard capsules (DDB 7.5 mg) and soft capsules (DDB 7.5 mg) on market and new formulation (DDB 7.5 mg) were 6.3, 15.0, 84.5 and 98.0%, respectively. Higher doses (8 units) resulted in a supersaturation within one hr of dissolution, and dissolved amounts were reduced markedly. Due to the saturation and precipitation, a directly proportional dose-dissolution relationship was not observed. The addition of copolyvidone and/or glycyrrhizic acid ammonium salt to DDB solution in polyethylene glycol 300 and 400 inhibited the formation of precipitates during dissolution and markedly enhanced the rabbit duodenal permeation of DDB. From the site-specific gastrointestinal permeation studies, it was found that permeation rates of DDB after mixing of non-aqueous DDB solutions with aqueous buffered solutions were faster in the order of $rectal\;<\;colonic\;{\risingdotseq}\;ileal\;{\risingdotseq}\;duodenal\;<\;jejunal\;<\;gastric$.

  • PDF

Biphenyl Dimethyl Dicarboxylate가 간내 Cytochrome $P_{450}$ 1A1과 2Bl 및 $CCl_4$ 유도 간독성에 미치는 영향 (Effect of Biphenyl Dimethyl Dicarboxylate on Cytochrome $P_{450}$ 1A1 and 2B1 and ${CCl_4}-Induced$ Hepatotoxicity in Rat Liver)

  • 김순선;오현영;김학림;양지선;김동섭;신윤용;최기환
    • 약학회지
    • /
    • 제43권6호
    • /
    • pp.827-833
    • /
    • 1999
  • In this study, we have investigated the effect of Biphenyl Dimethyl Dicarboxylate (DDB), a synthetic analogue of Schizandrin C isolated from Schizandrae Fructus on cytochrome $P_450$ lAl and 2Bl, and the protective mechanism against $CCl_4-induced$ hepatotoxicity in rat liver. After DDB was administered into male rats for different periods of time (1~7 days) and with different doses (25, 50, 100 and 200 mg/kg), mRNA levels of CYPlAl were measured by polymearse chain reaction (PCR) and assayed the activities of CYPlAl specific ethoxyresorufin-O-dealkylase (EROD) and CYP2Bl specific benzyloxyresorufin-O-dealkylase (BROD). DDB treatment resulted in increase in CYP2Bl mRNA level and BROD activity, whereas there was no change in CYPlAl mRNA level and EROD activity. This effect of DDB was time-and dose-dependent and reached maximal level by 3 day and 200 mg/kg treatment. In addition, rats were pre-treated with DDB at doses of 25, 50 or 100 mg/kg daily for 4 days, 3-hr after final treatment on the 4th day, $CCl_4$ 0.3ml/kg was intraperitonially injected into the rats to examine the effect of DDB on $CCl_4-induced$ hepatic injury. Serum levels of ALT and AST were determined and histopathological examination was done in rat liver. Furthermore, we have measured hepatic microsomal malondialdehyde(MDA) level, a parameter of lipid peroxidation. Based on serum ALT level and lipid peroxidation, pretreatment of DDB, 50 mg/kg appeared the most protective effect against $CCl_4-induced$ heapatotoxity. These results indicate that DDB stimulates CYP2Bl mRNA level and BROD activity in time and dose dependent manner and suggest that protective effect of DDB on $CCl_4-induced$ hepatotoxicity may be mediated through free radical scavenging.

  • PDF

Effect of Biphenyl Dimethyl Dicarboxylate on Chemical-Induced Hepatotoxicity

  • Kim, Sun-Hyung;Cho, Young-Jin;Bae, Yong-Jin;Lee, Kweon-Haeng;Lee, Sang-Bok
    • Toxicological Research
    • /
    • 제11권2호
    • /
    • pp.181-185
    • /
    • 1995
  • To know the mechanism of biphenyl dimethyl dicarboxylate (DDB) in the protection of chemically induced hepatotoxicity, the activity of glutamic pyruvic tran.saminase (GPT) and the level of lipid peroxidation metabolite (malondialdehyde, MDA) and ATP content in hepatocytes were determined in serum and primarily cultured hepatocytes. For in vibo study, rats were pretreated with DDB (300 mg/ kg, p.o.)for 7 days. DDB pretreatment efficiently reduced the elevation of serum GPT activity induced by carbon tetrachloride (1.6 ml/kg, s.c.) and acetaminophen administration (1500 mg/kg, i.p.). In ex vivo study, hepatocytes were isolated from the rats pretreated with DDB (300 mg/kg, p.o.)for 7 days and cultured for 12 hrs before inducing cytotoxicity with chemicals. The MDA formation and the GPT release induced by adriamycin $(1\times10^{-4} mg/ml)$ and cisplatin $(2\times10^{-4} mg/ml)$ were markedly decreased in the hepatocytes from the rats pretreated with DDB as compared to vehicle only. However, DDB pretreatment did not prevent the decrease of ATP contents of hepatocytes induced by cisplatin and adriamycin. In in vitro experiment, DDB was pretreated in primary cultured hepatocytes for 3 days. DDB enhanced the decreases of ATP contents induced by cisplatin and adriamycln. These results suggest that DDB may protect the hepatocytes from injury induced by hepatotoxlcants through inhibiting the lipid peroxidation.

  • PDF

비페닐디메칠디카르복실레이트 주사제의 설계 및 평가 (Design and Evaluation of Biphenyl Dimethyl Dicarboxylate Injections)

  • 김혜진;전인구
    • 약학회지
    • /
    • 제44권3호
    • /
    • pp.263-271
    • /
    • 2000
  • In an attempt to develop an injectable form of practically insoluble biphenyl dimethyl dicarboxylate (DDB), the effect of various vehicles, cosolvents and hydrotropic agents was investigated. It was found that polyethylene glycol (PEG) 400 revealed the best solvency toward DDB (17.7 mg/ml at $37^{\circ}C$), and decreasing order of the solubility was as follows: PEG 400>PEG 300>diethylene glycol monoethyl ether (DGME)>PEG-8 glyceryl caprylate/caprate. Among the hydrotropes used, sodium salicylate, sodium benzoate and nicotinamide were effective in increasing the solubility in water. The solubility of DDB in 2 M sodium salicylate, sodium benzoate and nicotinamide solutions was increased 44.3, 23.5 and 44.0 times than that in water, respectively. The addition of sodium salicylate and sodium benzoate to PEG 300-water PEG 400-water and DGME-water cosolvents remarkably increased the solubility of DDB, and significantly retarded precipitate formation when mixed with water Hemolytic properties of DDB injections (2 mg/4~10 ml) in PEG 300-water or DGME-water (60:40 v/v) cosolvents containing sodium benzoate (0.14~0.35 M) were very low. It was concluded from the results that these solutions would be applied to the design of new DDB injections.

  • PDF

수용액중의 비페닐디메칠디카르복실레이트의 가용화 (Solubilization of Biphenyl Dimethyl Dicarboxylate in Aqueous Solution)

  • 배준호;박은석;지상철
    • Journal of Pharmaceutical Investigation
    • /
    • 제27권3호
    • /
    • pp.199-205
    • /
    • 1997
  • In order to formulate biphenyl dimethyl dicarboxylate(DDB) aqueous solutions, the effects of various solubilizing agents such as cosolvents(PG, PEG 400, glycerin, ethanol), surfactants,$(poloxamer\;407,\;Cremophor^{\circledR}\; RH40,\;Solutol^{\circledR},\;Tween\;80,\;sodium\;lauryl\;sulfate)$, complexation agent$(CELDEX^{\circledR}\;CH-20)$ and others(urea, niacinamide, propylene carbonate, HPMC) on the solubility of DDB in water were evaluated. The solubility of DDB in water was about $0.21\;{\mu}g/ml\;at\;20^{\circ}C$, while its solubility in PEG 400 was 5,000 times higher than that in water. 60% PEG 400 aqueous solution was selected as an optimum solvent system, and surfactants or other solubilizing agents were added to prevent DDB from recrystalization. The addition of surfactants in water increased the solubility of DDB from 15- to 34-fold, however, $CELDEX^{\circledR}\;CH-20$ and other agents studied showed negligible effects on the solubility of DDB in water. The 60% PEG 400 aqueous solution containing 5% $Cremophor^{\circledR}$ RH40 was appeared as the formula of choice. It showed acceptable physical stability after stored for 7 days at $4^{\circ}C$.

  • PDF

Biphenyl dimethyl dicarboxylate (DDB) affects drug metabolizing enzyme, CYP450 in rat liver.

  • Hyon Y. Oh;Kim, Soon S.;Young S. Chang;Yhun. Y. Sheen
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.142-142
    • /
    • 1998
  • This study has been undertaken to examine the effect of biphenyl dimethyl dicarboxylate (DDB) on rat liver drug metabolizing enzyme in order to understand the mechanism of DDB on improving hepatic toxicity in rat liver. After DDB was administered into male rats for different periods of time, mRNA level of CYP1A1 and CYP2B1 was measured by polymerase chain reaction (PCR). DDB treatment resulted in increase in CYP2B1 mRNA level whereas there was no change in CYP1A1 mRNA level. This effect of DDB was time dependent reaching maximal level by 2-day treatment. DDB dose response study showed that 50mg/kg DDB induced CYP2B1 mRNA to maximal level and DDB icreased CYP2B1 gene expression with dose-dependent manner. Based on studies of lipid peroxidation, serum ALT and AST levels and histopathologic examination showed DDB protection on CCl4 induced hepatotoxiccity.

  • PDF

A Polymeric Micellar Carrier for the Solubilization of Biphenyl Dimethyl Dicarboxylate

  • Chi, Sang-Cheol;Yeom, Dae-Il;Kim, Sung-Chul;Park, Eun-Seok
    • Archives of Pharmacal Research
    • /
    • 제26권2호
    • /
    • pp.173-181
    • /
    • 2003
  • A polymeric micelle drug delivery system was developed to enhance the solubility of poorly-water soluble drug, biphenyl dimethyl dicarboxylate, DDB. The block copolymers consisting of poly(D,L-lactide) (PLA) as the hydrophobic segment and methoxy poly(ethylene glycol) (mPEG) as the hydrophilic segment were synthesized and characterized by NMR, DSC and MALDI-TOF mass spectroscopy. The size of the polymeric micelles measured by dynamic light scattering showed a narrow monodisperse size distribution with the average diameter less than 50 nm. The MW of mPEG-PLA, 3000 (MW of mPEG, 2 K; MW of PLA, 1K), and the presence of hydrophilic and hydrophobic segments on the polymeric micelles were confirmed by MALDI-TOF mass spectroscopy and NMR, respectively. Polymeric micelle solutions of DDB were prepared by three different methods, i.e. the matrix method, emulsion method and dialysis method. In the matrix method, DDB solubility was reached to 13.29 mg/mL. The mPEG-PLA 2K-1K micelle system was compared with the poloxamer 407 micelle system for their critical micelle concentration, micelle size, solubilizing capacity, stability in dilution and physical state. DDB loaded-polymeric micelles prepared by the matrix method showed a significantly increased aqueous solubility (>5000 fold over intrinsic solubility) and were found to be superior to the poloxamer 407 micelles as a drug carrier.

Biphenyl Dimethyl Dicarboxylate의 저용량 단기 투여가 만성 간염환자의 상승된 Aspartate Aminotransferase와 Alanine Aminotransferase의 저하 효과에 관한 임상적 연구 (Clinical Study for Low Dose & Short-Term Therapy of Biphenyl Dimethyl Dicarboxylate(DDB) in the Chronic Hepatitis. Patients with Elevated Serum Aspartate Aminotransferase and Alanine Aminotransferase Levels)

  • 김동웅;강병기
    • 한국임상약학회지
    • /
    • 제3권1호
    • /
    • pp.45-53
    • /
    • 1993
  • Biphenyl Dimethyl dicarboxylate(DDB) has been regarded as a safe, effective drug for decreasing serum aminotransferase levels from elevated serum aminotransferase levels, which cause acute or chronic hepatitis and chronic liver diseases. This study was designed to low dose(22.5mg/day) & short-term therapy effectiveness for 4 weeks of DDB in 30 chronic hepatitis patients with elevated serum aminotransferases. The following results were observed. 1. Serum alanine aminotransferase(ALT) levels significantly decresed from 173. $97\pm130.62(U/L)$ of pretreatment level to $32.23\pm19.22(U/L)$ after treatment for 4 weeks(p<0.00l) and normalized patients by $73\%$ 2. Serum aspartate (AST) aminotransferase levels significantly decreased from $94.90\pm49.17(U/L)$ of pretreatment level to $45.30\pm23.25(U/L)4 after treatment(p0<0.01). 3. However, no significant effects in the serum AST & ALT changes by which cause hepatitis and hepatitis duration (p>0.05). 4. No significant adverse effects were observed except for mild epigastric discomfort in one patient during DDB treatment It is suggested that DDB small dosage administration can result effectively decreasing serum aminotransferase levels from chronic hepatitis patients with elevated serum aminotransferase levels.

  • PDF

난용성약물 Biphenyl Dimethyl Dicarboxylate의 제제화를 통한 용출증대 (Enhancement of Dissolution Properties through Formulations of Insoluble Drug Biphenyl Dimethyl Dicarboxylate)

  • 이순아;송경;박은진;손동환;고건일;김재백
    • Journal of Pharmaceutical Investigation
    • /
    • 제26권1호
    • /
    • pp.23-28
    • /
    • 1996
  • The dissolution characteristics of DDB were markedly enhanced by preparing solid dispersions of drug with polyethylene glycol 6000. Solid dispersions of various weight fraction were formed by a melting method. And various tablets$(A{\sim}E)$ were prepared from these solid dispersions with excipients (lactose, com starch, Avicel and PVP) by wet granulation method. There were no significant differences in dissolution rates between physical mixture and DDB alone. But dissolution rates of solid dispersions were $1.4{\sim}2.0$ times greater than that of DDB alone and $1.2{\sim}1.8$ times greater than those of a commercial tablet.

  • PDF

비페닐디메칠디카르복실레이트 연질캅셀제의 설계 및 제제학적 평가 (Design and Pharmaceutical Evaluation of Biphenyl Dimethyl Dicarboxylate Elastic Capsules)

  • 전인구;곽혜선;문지현
    • Biomolecules & Therapeutics
    • /
    • 제4권4호
    • /
    • pp.419-427
    • /
    • 1996
  • To solubilize practically insoluble biphenyl dimethyl dicarboxylate (DDB), which has been used for the treatment of chronic hepatitis as tablets or hard capsules, the solubilities of DDB in various hydrophilic, oily and hydrocarbon vehicles, and aqueous surfactant solutions were measured by high performance liquid chromatography. It was found that, among the vehicles studied, polyethylene glycol (PEG) 300 revealed the best solvency, and the solubility reached 17.6 mg/ml at 37$^{\circ}C$. The addition of glycyrrhizic acid ammonium salt (GAA) to DDB-PEG 300 solution (5-20 mg/g) inhibited the formation of precipitates, and at the concentration of 10 mg/g, any precipitaction was not observed even after 2 years at 4$^{\circ}C$. Furthermore, GAA markedly enhanced the permeation of DDB through the rabbit duodenal mucosa in a concentration dependent manner. The addition of copolyvidone (ca. 1.0%) to DDB-GAA-PEG 300 system (1 : 0.5 97.5 w/w) was most effective in preventing the considerable precipitation of DDB-PEG 300 solution (7.5 mg/750 mg) when mixed with water of 300-900 ml at 37$^{\circ}C$. GAA showed a synergistic effect in the prevention of precipitate formation. This finding suggests that this DDB formulation may form less precipitation when DDB soft capsules disintegrate and diffuse into the gastrointestinal fluid, resulting in improving the bioavailability Dissolution rate of DDB (7.5 mg) from sort elastic capsules of DDB-GAA-PEG 300 system was rapid. The supersaturation state was maintained for 2 hr at the concentration of 7.35$\pm$3.3 mg in 900 ml of water without precipitation. The total amount of DDB dissolved from this new formulation was 5.3 and 6.1 times higher, when compared to marketed DDB tablets (25 mg) and capsules (7.5 mg), respectively.

  • PDF