• Title/Summary/Keyword: Biphasic reaction

Search Result 70, Processing Time 0.022 seconds

Preparation of Sialyloligosaccharide from Raw Egg Yolk in Biphasic System (Biphasic system에 의한 생난황으로부터 시알산 함유 올리고당의 제조)

  • 김상진;임한진;안병용;최동성
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.55-59
    • /
    • 2000
  • Protease-catalyzed liberation of sialyloligosaccharide from raw egg yolk was investigated in biphasic system, water-immiscible hexane system. Biphasic system 1, in which water was the continuous phase, was better than the opposite biphasic system ll in sialyloligosaccharide liberation. The optimal conditions of temperature, water content and reaction time were $30^{\circ}C$, 20% and 12 hours, respectively. Protease activity was strongly influenced by the amount of water present in the reaction mixture. The liberation of sialyloligosaccharide was accelerated by protease pre-treatment at $30^{\circ}C$ in 0.2 M NaCl solution, prior to addition of hexane (Biphasic system I).

  • PDF

Determination of Kinetic Parameters for Texture Changes of Sweet Potatoes during Heating (고구마 조직의 가열변화에 대한 반응속도론적 상수 결정)

  • Lee, Jung-Ju;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.66-71
    • /
    • 2001
  • Kinetic parameters for the texture degradation of three varieties of sweet potato during heating were determined using two alternative methods, the biphasic model and the fractional conversion method. The texture degradation of sweet potatoes during heating could be expressed by two simultaneous first order reactions using the biphasic method, whose activation energies were ranged $71.0{\sim}75.1\;kJ/mol\;and\;48.4{\sim}59.6\;kJ/mol$ for the initial fast texture degradation reaction and the slow texture degradation reaction at a prolonged heating period, respectively. However, the whole texture degradation phenomena of sweet potatoes during heating could also be explained by a single first order reaction using the fractional conversion method. The activation energies were $67.5{\sim}75.3\;kJ/mol$, which were comparable with those of the first phase reaction for the texture degradation determined by the biphasic model. A kinetic compensation effect shown between the kinetic parameters determined by both methods indicates that both methods can be conveniently used to determine kinetic parameters for the texture degradation of sweet potatoes by heating.

  • PDF

Kinetics and Mechanism of Pyridinolysis of O,O-Diethyl S-Aryl Phosphorothioates

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1329-1332
    • /
    • 2014
  • The kinetic studies on the reactions of O,O-diethyl Z-S-aryl phosphorothioates with X-pyridines have been carried out in dimethyl sulfoxide. The free energy correlations with X in the nucleophiles are biphasic concave upwards with a break point at X = H, while those for substituent Z variations in the leaving groups are linear. The negative sign of ${\rho}_{XZ}$ implies that the reaction proceeds through a concerted mechanism for both the strongly and weakly basic pyridines. The biphasic concave upward free energy relationships with X are rationalized by a change in the nucleophilic attacking direction from frontside with the strongly basic pyridines to backside with the weakly basic pyridines.

Kinetics and Mechanism of the Pyridinolysis of Methyl Phenyl Phosphinic Chloride in Acetonitrile

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1945-1950
    • /
    • 2011
  • The pyridinolysis of methyl phenyl phosphinic chloride is investigated kinetically in acetonitrile at -20.0 $^{\circ}C$. The Hammett and Br${\o}$nsted plots for substituent X variations in the nucleophiles are biphasic concave downwards with a break point at X = H, and unusual positive ${\rho}_X$ (= 2.94) and negative ${\beta}_X$ (= -0.48) values are obtained for the strongly basic nucleophiles. A stepwise mechanism with a rate-limiting step change from bond breaking for the weakly basic pyridines to bond formation for the strongly basic pyridines is proposed on the basis of biphasic concave downward Hammett and Br${\o}$nsted plots. Unusual positive ${\rho}_X$ and negative ${\beta}_X$ values are rationalized by the isokinetic relationship. The pyridinolyses and anilinolyses of four $R_1R_2$P(=O)Cl-type substrates, dimethyl, diethyl, methyl phenyl, and diphenyl phosphinic chlorides in acetonitrile are compared to obtain systematic information on phosphoryl transfer reaction mechanism. The combination of the two ligands, Me and Ph, shows unexpected kinetic results for both the anilinolysis and pyridinolysis: greatest magnitude of $k_H/k_D$ (= 2.10) involving deuterated anilines $[XC_6H_4NH_2(D_2)]$ for the anilinolysis, and exceptionally fast rate and biphasic concave downward free energy correlation for the pyridinolysis.

Kinetics of Horseradish Peroxidase-Catalyzed Nitration of Phenol in a Biphasic System

  • Kong, Mingming;Zhang, Yang;Li, Qida;Dong, Runan;Gao, Haijun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.297-305
    • /
    • 2017
  • The use of peroxidase in the nitration of phenols is gaining interest as compared with traditional chemical reactions. We investigated the kinetic characteristics of phenol nitration catalyzed by horseradish peroxidase (HRP) in an aqueous-organic biphasic system using n-butanol as the organic solvent and ${NO_2}^-$ and $H_2O_2$ as substrates. The reaction rate was mainly controlled by the reaction kinetics in the aqueous phase when appropriate agitation was used to enhance mass transfer in the biphasic system. The initial velocity of the reaction increased with increasing HRP concentration. Additionally, an increase in the substrate concentrations of phenol (0-2 mM in organic phase) or $H_2O_2$ (0-0.1 mM in aqueous phase) enhanced the nitration efficiency catalyzed by HRP. In contrast, high concentrations of organic solvent decreased the kinetic parameter $V_{max}/K_m$. No inhibition of enzyme activity was observed when the concentrations of phenol and $H_2O_2$ were at or below 10 mM and 0.1 mM, respectively. On the basis of the peroxidase catalytic mechanism, a double-substrate ping-pong kinetic model was established. The kinetic parameters were ${K_m}^{H_2O_2}=1.09mM$, ${K_m}^{PhOH}=9.45mM$, and $V_{max}=0.196mM/min$. The proposed model was well fit to the data obtained from additional independent experiments under the suggested optimal synthesis conditions. The kinetic model developed in this paper lays a foundation for further comprehensive study of enzymatic nitration kinetics.

Clean and Efficient Synthesis of Furfural From Xylose by Microwave-Assisted Biphasic System using Bio-Based Heterogeneous Acid Catalysts

  • Vo, Anh Thi Hoang;Lee, Hong-shik;Kim, Sangyong;Cho, Jin Ku
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.250-257
    • /
    • 2016
  • As an attempt to replacing petroleum-based chemicals with bio-based ones, synthesis of furfural from biomass-derived xylose attracts much attention in recent days. Conventionally, furfural from xylose has been produced via the utilization of highly corrosive, toxic, and environmentally unfriendly mineral acids such as sulfuric acid or hydrochloric acid. In this study, microwave-assisted biphasic reaction process in the presence of novel bio-based heterogeneous acid catalysts was developed for the eco-benign and effective synthesis of furfural from xylose. The microwave was irradiated for reaction acceleration and a biphasic system consisting of $H_2O$ : MIBK (1 : 2) was designed for continuous extraction of furfural into the organic phase in order to reduce the undesired side products formed by decomposition/condensation/oligomerization in the acidic aqueous phase. Moreover, sulfonated amorphous carbonaceous materials were prepared from wood powder, the most abundant lignocellulosic biomass. The prepared catalysts were characterized by FT-IR, XPS, BET, elemental analysis and they were used as bio-based heterogeneous acid catalysts for the dehydration of xylose into furfural more effectively. For further optimization, the effect of temperature, reaction time, water/organic solvent ratio, and substrate/catalyst ratio on the xylose conversion and furfural yield were investigated and 100% conversion of xylose and 74% yield of furfural was achieved within 5 h at $180^{\circ}C$. The bio-based heterogeneous acid catalysts could be used three times without any significant loss of activity. This greener protocol provides highly selective conversion of xylose to furfural as well as facile isolation of product and bio-based heterogeneous acid catalysts can alternate the environmentally-burdened mineral acids.

Nucleophilic Substitution Reactions of O-Methyl N,N-Diisopropylamino Phosphonochloridothioate with Anilines and Pyridines

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1016-1022
    • /
    • 2014
  • The kinetic studies on the reactions of O-methyl N,N-diisopropylamino phosphonochloridothioate with X-anilines and X-pyridines have been carried out in acetonitrile. The free energy relationship with X in the anilines exhibits biphasic concave upwards with a break region between X = (H and 4-F), giving unusual negative ${\beta}_X$ and positive ${\rho}_X$ values with weakly basic anilines. The unusual phenomenon is rationalized by isokinetic relationship. A stepwise mechanism with a rate-limiting leaving group departure from the intermediate is proposed based on the selectivity parameter and variation trend of the deuterium kinetic isotope effects with X. The free energy relationship with X in the pyridines exhibits biphasic concave upwards with a break point at X = 3-MeO. A concerted mechanism is proposed based on relatively small ${\beta}_X$ value, and frontside and backside nucleophilic attack are proposed with strongly and weakly basic pyridines, respectively.

Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4387-4391
    • /
    • 2011
  • The kinetic studies on the pyridinolysis of diisopropyl thiophosphinic chloride have been carried out in acetonitrile at $55.0^{\circ}C$. The free energy correlations for substituent X variations in the X-pyridines are biphasic concave upwards with a break point at X = 3-Ph. A concerted SN2 mechanism is proposed with a change of the attacking direction of the X-pyridine from a frontside attack for the strongly basic pyridines to a backside attack for the weakly basic pyridines. The factors to determine the rates and thio effects on the rates for the pyridinolyses of thiophophinic chloride, chlorothiophosphate, phosphinic chloride, phosphonochloridothioate, and chlorophosphate systems are briefly reviewed on the basis of the magnitude of the positive charge of the reaction center P atom and steric effects of the two ligands.

Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Dey, Shuchismita;Kim, Chan-Kyung;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1138-1142
    • /
    • 2011
  • Kinetic studies for the reactions of Y-aryl phenyl chlorothiophosphates with X-pyridines have been carried out in acetonitrile at $35.0^{\circ}C$. The Hammett and Bronsted plots for substituent X variations in the nucleophiles are biphasic concave upwards with a break point at X = 3-Ph, while the Hammett plots for substituent Y variations in the substrates are biphasic concave downwards (and partially upwards) with a break point at Y = H. The signs and magnitudes of the cross-interaction constant (${\rho}_{XY}$) are strongly dependent upon the nature of substituents, X and Y. The proposed mechanism is a stepwise process with a rate-limiting step change from bond breaking with the weaker electrophiles to bond formation with the stronger eletrophiles. The nonlinear free energy correlations of biphasic concave upward plots for substituent X variations in the nucleophiles are rationalized by a change in the attacking direction of the nucleophile from a backside with less basic pyridines to a frontside attack with more basic pyridines.