• Title/Summary/Keyword: Bipartite network

Search Result 31, Processing Time 0.03 seconds

Cluster and Polarity Analysis of Online Discussion Communities Using User Bipartite Graph Model (사용자 이분그래프모형을 이용한 온라인 커뮤니티 토론 네트워크의 군집성과 극성 분석)

  • Kim, Sung-Hwan;Tak, Haesung;Cho, Hwan-Gue
    • Journal of Internet Computing and Services
    • /
    • v.19 no.5
    • /
    • pp.89-96
    • /
    • 2018
  • In online communities, a large number of participants can exchange their opinion using replies without time and space restrictions. While the online space provides quick and free communication, it also easily triggers unnecessary quarrels and conflicts. The network established on the discussion participants is an important cue to analyze the confrontation and predict serious disputes. In this paper, we present a quantitative measure for polarity observed on the discussion network built from reply exchanges in online communities. The proposed method uses the comment exchange information to establish the user interaction network graph, computes its maximum spanning tree, and then performs vertex coloring to assign two colors to each node in order to divide the discussion participants into two subsets. Using the proportion of the comment exchanges across the partitioned user subsets, we compute the polarity measure, and quantify how discussion participants are bipolarized. Using experimental results, we demonstrate the effectiveness of our method for detecting polarization and show participants of a specific discussion subject tend to be divided into two camps when they debate.

Identification of Diseasomal Proteins from Atopy-Related Disease Network (아토피관련 질병 네트워크로부터 질병단백체 발굴)

  • Lee, Yoon-Kyeong;Yeo, Myeong-Ho;Kang, Tae-Ho;Yoo, Jae-Soo;Kim, Hak-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.114-120
    • /
    • 2009
  • In this study, we employed the idea that disease-related proteins tend to be work as an important factor for architecture of the disease network. We initially obtained 43 atopy-related proteins from the Online Mendelian Inheritance in Man (OMIM) and then constructed atopy-related protein interaction network. The protein network can be derived the map of the relationship between different disease proteins, denoted disease interaction network. We demonstrate that the associations between diseases are directly correlated to their underlying protein-protein interaction networks. From constructed the disease-protein bipartite network, we derived three diseasomal proteins, CCR5, CCL11, and IL/4R. Although we use the relatively small subnetwork, an atopy-related disease network, it is sufficient that the discovery of protein interaction networks assigned by diseases will provide insight into the underlying molecular mechanisms and biological processes in complex human disease system.

Identification of novel potential drugs and miRNAs biomarkers in lung cancer based on gene co-expression network analysis

  • Sara Hajipour;Sayed Mostafa Hosseini;Shiva Irani;Mahmood Tavallaie
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.38.1-38.8
    • /
    • 2023
  • Non-small cell lung cancer (NSCLC) is an important cause of cancer-associated deaths worldwide. Therefore, the exact molecular mechanisms of NSCLC are unidentified. The present investigation aims to identify the miRNAs with predictive value in NSCLC. The two datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEmiRNA) and mRNAs (DEmRNA) were selected from the normalized data. Next, miRNA-mRNA interactions were determined. Then, co-expression network analysis was completed using the WGCNA package in R software. The co-expression network between DEmiRNAs and DEmRNAs was calculated to prioritize the miRNAs. Next, the enrichment analysis was performed for DEmiRNA and DEmRNA. Finally, the drug-gene interaction network was constructed by importing the gene list to dgidb database. A total of 3,033 differentially expressed genes and 58 DEmiRNA were recognized from two datasets. The co-expression network analysis was utilized to build a gene co- expression network. Next, four modules were selected based on the Zsummary score. In the next step, a bipartite miRNA-gene network was constructed and hub miRNAs (let-7a-2-3p, let-7d-5p, let-7b-5p, let-7a-5p, and let-7b-3p) were selected. Finally, a drug-gene network was constructed while SUNITINIB, MEDROXYPROGESTERONE ACETATE, DOFETILIDE, HALOPERIDOL, and CALCITRIOL drugs were recognized as a beneficial drug in NSCLC. The hub miRNAs and repurposed drugs may act a vital role in NSCLC progression and treatment, respectively; however, these results must validate in further clinical and experimental assessments.

Modeling and Simulation of Scheduling Medical Materials Using Graph Model for Complex Rescue

  • Lv, Ming;Zheng, Jingchen;Tong, Qingying;Chen, Jinhong;Liu, Haoting;Gao, Yun
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1243-1258
    • /
    • 2017
  • A new medical materials scheduling system and its modeling method for the complex rescue are presented. Different from other similar system, first both the BeiDou Satellite Communication System (BSCS) and the Special Fiber-optic Communication Network (SFCN) are used to collect the rescue requirements and the location information of disaster areas. Then all these messages will be displayed in a special medical software terminal. After that the bipartite graph models are utilized to compute the optimal scheduling of medical materials. Finally, all these results will be transmitted back by the BSCS and the SFCN again to implement a fast guidance of medical rescue. The sole drug scheduling issue, the multiple drugs scheduling issue, and the backup-scheme selection issue are all utilized: the Kuhn-Munkres algorithm is used to realize the optimal matching of sole drug scheduling issue, the spectral clustering-based method is employed to calculate the optimal distribution of multiple drugs scheduling issue, and the similarity metric of neighboring matrix is utilized to realize the estimation of backup-scheme selection issue of medical materials. Many simulation analysis experiments and applications have proved the correctness of proposed technique and system.

Emergence and Structure of Complex Mutualistic Networks

  • Lee, KyoungEun;Jung, Nam;Lee, Hyun Min;Maeng, Seung Eun;Lee, Jae Woo
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.3
    • /
    • pp.149-153
    • /
    • 2022
  • The degree distribution of the plant-pollinator network was identified by analyzing the data in the ecosystem and reproduced by a model of the growing bipartite mutualistic networks. The degree distribution of pollinator shows power law or stretched exponential distribution, while plant usually shows stretched exponential distribution. In the growth model, the plant and the pollinator are selected with probability Pp and PA=1-Pp, respectively. The number of incoming links for the plant and the pollinator is lp and lA, respectively. The probability that the link of the plant selects the pollinator of the existing network given as $A_{k_i}=k^{{\lambda}_A}_i/{\sum}_i\;k^{{\lambda}_A}_i$, and the probability that the pollinator selects the plant is $P_{k_i}=k^{{\lambda}_p}_i/{\sum}_i\;k^{{\lambda}_p}_i$. When the nonlinear growth index is 𝛌X=1 (X=A or P), the degree distribution follows a power law, and if 0≤𝛌X<1, the degree distribution follows a stretched exponential distribution. The cumulative degree distributions of plants and pollinators of 14 empirical plant-pollinators included in Interaction Web Database were calculated. A set of parameters (PA,PP,lA,lP) that reproduces these cumulative degree distributions and a growth index 𝛌X (X=A or P) were obtained. We found that animal takes very heterogenous connections, whereas plant takes a more flexible connection network.

Characterization of Diseasomal Proteins from Human Disease Network (인간 질병 네트워크로부터 얻은 질병 단백체의 특성 분석)

  • Lee, Yoon Kyeong;Ku, Jaeul;Yeo, Myeong Ho;Kang, Tae Ho;Song, MinDong;Yoo, Jae-Soo;Kim, Hak Yong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.306-311
    • /
    • 2009
  • We initially obtained human diseases-related proteins dataset from the OMIM and the SWISS PROT and then constructed disease-related protein-protein interaction network. The protein network contains 40 hub proteins such as CALM1, ACTB and ABL2. The protein network can be derived the map of the relationship between different disease proteins, denoted disease interaction network. We demonstrate that the associations between diseases are directly correlated to their underlying protein-protein interaction networks. From constructed the disease-protein bipartite network, we derived 38 diseasomal proteins, including APP, ABL1 and STAT1. We previously demonstrated that hub proteins in the network tend to be diseasomal proteins in the disease-related protein sub-networks. However, we found that 18% hubs are only diseasomal proteins in the whole disease network. At this point, we could not elucidate difference in the hub-diseasomal proteins tendency between sub0network and whole network. In spite of we still have unsolved problems, our results elucidate that the discovery of protein interaction networks assigned by diseases will provide insight into the underlying molecular mechanisms and biological processes in complex human disease system.

  • PDF

Socially Aware Device-to-multi-device User Grouping for Popular Content Distribution

  • Liu, Jianlong;Zhou, Wen'an;Lin, Lixia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4372-4394
    • /
    • 2020
  • The distribution of popular videos incurs a large amount of traffic at the base stations (BS) of networks. Device-to-multi-device (D2MD) communication has emerged an efficient radio access technology for offloading BS traffic in recent years. However, traditional studies have focused on synchronous user requests whereas asynchronous user requests are more common. Hence, offloading BS traffic in case of asynchronous user requests while considering their time-varying characteristics and the quality of experience (QoE) of video request users (VRUs) is a pressing problem. This paper uses social stability (SS) and video loading duration (VLD)-tolerant property to group VRUs and seed users (SUs) to offload BS traffic. We define the average amount of data transmission (AADT) to measure the network's capacity for offloading BS traffic. Based on this, we formulate a time-varying bipartite graph matching optimization problem. We decouple the problem into two subproblems which can be solved separately in terms of time and space. Then, we propose the socially aware D2MD user selection (SA-D2MD-S) algorithm based on finite horizon optimal stopping theory, and propose the SA-D2MD user matching (SA-D2MD-M) algorithm to solve the two subproblems. The results of simulations show that our algorithms outperform prevalent algorithms.

Science and Technology Networks for Disaster and Safety Management: Based on Expert Survey Data (재난안전관리 과학기술 네트워크: 전문가 수요조사를 중심으로)

  • Heo, Jungeun;Yang, Chang Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.123-134
    • /
    • 2018
  • Recently, due to the rising incidence of disasters in the nation, there has been a growing interest in the relevance and role of science and technology in solving disaster and safety related issues. In addition, the necessities of securing the human rights of all citizens in disaster risk reduction, identifying fields of technology development for effective disaster response, and improving the efficiency of R&D investment for disaster and safety are becoming more important as the different types of disasters and stages of disaster and safety management process have been considered. In this study, we analyzed bipartite or two-mode networks constructed from an expert survey dataset of technology development for disaster and safety management. The results reveal that earthquake and fire are the two disasters affecting an individual and society at large and demonstrate that AI and big data analytics are effective supports in managing disaster and safety. We believe that such a network analytic approach can be used to explore some important implications exist for the national science and technology effort and successful disaster and safety management practices in Korea.

Analysis of Symptoms-Herbs Relationships in Shanghanlun Using Text Mining Approach (텍스트마이닝 기법을 이용한 『상한론』 내의 증상-본초 조합의 탐색적 분석)

  • Jang, Dongyeop;Ha, Yoonsu;Lee, Choong-Yeol;Kim, Chang-Eop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.159-169
    • /
    • 2020
  • Shanghanlun (Treatise on Cold Damage Diseases) is the oldest document in the literature on clinical records of Traditional Asian medicine (TAM), on which TAM theories about symptoms-herbs relationships are based. In this study, we aim to quantitatively explore the relationships between symptoms and herbs in Shanghanlun. The text in Shanghanlun was converted into structured data. Using the structured data, Term Frequency - Inverse Document Frequency (TF-IDF) scores of symptoms and herbs were calculated from each chapter to derive the major symptoms and herbs in each chapter. To understand the structure of the entire document, principal component analysis (PCA) was performed for the 6-dimensional chapter space. Bipartite network analysis was conducted focusing on Jaccard scores between symptoms and herbs and eigenvector centralities of nodes. TF-IDF scores showed the characteristics of each chapter through major symptoms and herbs. Principal components drawn by PCA suggested the entire structure of Shanghanlun. The network analysis revealed a 'multi herbs - multi symptoms' relationship. Common symptoms and herbs were drawn from high eigenvector centralities of their nodes, while specific symptoms and herbs were drawn from low centralities. Symptoms expected to be treated by herbs were derived, respectively. Using measurable metrics, we conducted a computational study on patterns of Shanghanlun. Quantitative researches on TAM theories will contribute to improving the clarity of TAM theories.

Application of diversity of recommender system accordingtouserpreferencechange (사용자 선호도 변화에 따른 추천시스템의 다양성 적용)

  • Na, Hyeyeon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.67-86
    • /
    • 2020
  • Recommender Systems have been huge influence users and business more and more. Recently the importance of E-commerce has been reached rapid growth greatly in world-wide COVID-19 pandemic. Recommender system is the center of E-commerce lively. Top ranked E-commerce managers mentioned that recommender systems have a major influence on customer's purchase such as about 50% of Netflix, Amazon sales from their recommender systems. Most algorithms have been focused on improving accuracy of recommender system regardless of novelty, diversity, serendipity etc. Recommender systems with only high accuracy cannot satisfy business long-term profit because of generating sales polarization. In addition, customers do not experience enjoyment of shopping from only focusing accuracy recommender system because customer's preference is changed constantly. Therefore, recommender systems with various values need to be developed for user's high satisfaction. Reranking is the most useful methodology to realize diversity of recommender system. In this paper, diversity of recommender system is represented through constructing high similarity with users who have different preference using each user's purchased item's category algorithm. It is distinguished from past research approach which is changing the algorithm of recommender system without user's diversity preference level. We tried to discover user's diversity preference level and observed the results how the effect was different according to user's diversity preference level. In addition, graph-based recommender system was used to show diversity through user's network, not collaborative filtering. In this paper, Amazon Grocery and Gourmet Food data was used because the low-involvement product, such as habitual product, foods, low-priced goods etc., had high probability to show customer's diversity. First, a bipartite graph with users and items simultaneously is constructed to make graph-based recommender system. However, each users and items unipartite graph also need to be established to show diversity of recommender system. The weight of each unipartite graph has played crucial role changing Jaccard Distance of item's category. We can observe two important results from the user's unipartite network. First, the user's diversity preference level is observed from the network and second, dissimilar users can be discovered in the user's network. Through the research process, diversity of recommender system is presented highly with small accuracy loss and optimalization for higher accuracy is possible controlling diversity ratio. This paper has three important theoretical points. First, this research expands recommender system research for user's satisfaction with various values. Second, the graph-based recommender system is developed newly. Third, the evaluation indicator of diversity is made for diversity. In addition, recommender systems are useful for corporate profit practically and this paper has contribution on business closely. Above all, business long-term profit can be improved using recommender system with diversity and the recommender system can provide right service according to user's diversity level. Lastly, the corporate selling low-involvement products have great effect based on the results.