• Title/Summary/Keyword: Biotrickling filters

Search Result 7, Processing Time 0.015 seconds

Technology of VOC Removal in Air by Biotrickling Filter (생물살수여과법을 이용한 공기 중 VOC 제거 기술)

  • ;Marc A. Deshusses
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.101-112
    • /
    • 2003
  • Biological methods are frequently used for treatment of contaminated air, containing volatile organic compounds and odor compounds in low concentrations and high flow rate of air streams. For more than 20 years. biofilter has been recognized as a cost effective technology for the purification of contaminated air. Most commercial applications before 1990 were for control of odors. In the past decades major progress has been accomplished in the development of vapor phase bioreactor. in particular biotrickling filers. Biotrickling filters are more complex than biofilters. but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. While the level of understanding of biotrickling filtration process for VOCs still remains limited. the evidence success of biotreatment of VOC in air resulted in pursuing active research. This paper presents fundamental and practical aspert of VOCs treatment from air in biotrickling filter. Special emphasis is given to the operating parameters and the factors influencing performance for biotrickling filter.

Characteritics of Toluene and $H_2S$ Removal in a Biotrickling filters with Plastic & Woodchip composite Media (복합플라스틱계 담체를 이용한 Biotrickling filters의 Toluene과 황화수소 제거특성)

  • Yim, Dong-Won;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.37-46
    • /
    • 2007
  • This study developed composition-plastic media with woodchips and plastic as main materials, and examined the performance of media. Compared to the existing commercial media, the media had similar performance in removal efficiency and microbes attaching characteristic, and was evaluated that they are distinguished from economic side. Performance test of media was conducted to examine the removal capacity of toluene and hydrogen sulfide in a gas stream by using a lab-scale biotrickling filter systems packed with them. At a volumetric loading of $1.5\;m^3/hr$ with inlet concentration 260 ppm and empty bed residence time (EBRT) 42s, the toluene removal efficiency was shown over 90%, and the maximum elimination capacity of toluene in the biotrickling filter was $77g/m^3{\cdot}hr$. Effective co-treatments of $H_2S$ and Toluene were observed in the lab-scale biotrickling filters. The maximum elimination capacity of $H_2S$ was $100\;g-S/m^3{\cdot}hr$. Up to 100 ppm, the concentration of $H_2S$ did not have an effect on toluene removal efficiency, but the removal efficiency of toluene decreased with increasing inlet $H_2S$ concentration.

Operating Parameters and Performance of Biotrickling Filtration for Air Pollution Control (대기오염물질 제어를 위한 생물살수여과법의 운전인자와 성능평가)

  • Won, Yang-Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.474-484
    • /
    • 2005
  • Biological treatment is a promising alternative to conventional air pollution control methods. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing volatile organic compounds and odor compounds. They offer several advantages over traditional technologies such as incineration or adsorption. These include lower treatment costs, absence of formation of secondary pollutants, no spent chemicals, low energy demand and low temperature treatment. The most widely used bioreactor for air pollution control is biofilter, but it has several limitations. In the past years major progress has been accomplished in the development of vapor phase bioreactor, in particular biotrickling filters. Biotrickling filters are more complex than biofilters, but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. While the level of understanding of biotrickling filtration process for VOCs still remains limited, the evident success of biotreatment of VOC in air stimulated the pursue of acitve research. This paper presents fundamental and theoretical/practical aspect of air pollution control in biotrickling filter. Special emphasis is given to the operating parameters and the factors influencing performance for air pollution control in biotrickling filter.

Mass Transfer Model and Coefficient on Biotrickling Filtration for Air Pollution Control (대기오염제어를 위한 생물살수여과법에서 물질전달 Model과 계수에 관한 연구)

  • Won, Yang-Soo;Jo, Wan-Keun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.489-495
    • /
    • 2015
  • A fundamental mathematical model for mass transfer processes has been used to understand the air pollution control process in biotrickling filtration and to evaluate the mass transfer coefficients of gas/liquid (trickling liquid), gas/solid (biomass) and liquid/solid based upon experimental results and mathematical model calculations for selected operating conditions. The mass transfer models for the utilization of the steady-state mass balance for gas/liquid, and dynamic mass balance model for gas/solid & liquid/solid in biotrickling filters were established and discussed. The mass transfer model considered the reactor to comprise finite sections, for each of which dynamic mass balances for gas/solid and liquid/solid system were solved by numerical analysis code (numerical iteration). To determine the mass transfer coefficients ($K_La$) of gas/liquid, gas/solid & liquid/solid in a biotrickling filter, the calculation results based upon mass balance equation was optimized to coincide with the experimental results for the selected operating conditions. Finally, this study contributed the development of experimental methods and discussed the mathematical model to determine the mass transfer coefficients in a biotrickling filtration for air pollution control.

Experimental Evaluation Method of Mass Transfer Coefficient on Biotrickling Filtration for Air Pollution Control (대기오염제어를 위한 생물살수여과법에서 물질전달계수 실험평가방법에 관한 연구)

  • Won, Yang-Soo;Jo, Wan-Keun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.482-488
    • /
    • 2015
  • Biological treatment is promising alternative to conventional air pollution control method. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing volatile organic compounds and odor. The studies of mass transfer in biotrickling filters for air pollution control were of importance in order to control and optimize the purification process. The objectives of this study were to develop the experimental methodologies to evaluate the mass transfer coefficients of gas/liquid(trickling liquid), gas/solid(biomass) and liquid/solid in three phase biotrickling filtration. Also, this study characterized the influence factors on mass transfer such as dynamic holdup volume, gas/liquid flow rate ratio, biomass weight in reactor and recirculation rate of trickling medium for each phase of biotrickling filter.

Biotreatment Technologies for Air Pollution Control (생물학적 처리기술을 이용한 대기오염 제어)

  • Won, Yang-Soo
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.1-15
    • /
    • 2007
  • Biological treatment is a relatively recent air pollution control technology in which off-gases containing biodegradable odors and volatile organic compounds(VOCs) are vented through microbes. It is a promising alternative to conventional air pollution control methods. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing VOCs and odor compounds. They offer several advantages over traditional technologies such as incineration or adsorption. These include lower treatment costs, absence of formation of secondary pollutants, no spent chemicals, low energy demand and low temperature treatment. The three most widely used technologies are described, namely biofiltration, biotrickling filtration, bioscrubbing. The most widely used bioreactor for air pollution control is biofilter, but it has several limitations. In the past years major progress has been accomplished in the development of vapor phase bioreaction systems, for solving problems of biofilter. Biotrickling filters are more complex than biofilters, but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. This, paper reviews fundamental and theoretical/practical aspect of air pollution control in biofilter, biotrickling filter and bioscrubber, focusing more extensively on biotrickling filtration. Special emphasis is given to the operating parameters and the factors influencing performance for air pollution control, and cost estimation in biotreatment technologies.

  • PDF

Bio-filters for the Treatment of VOCs and Odors - A Review

  • Vikrant, Kumar;Kim, Ki-Hyun;Szulejko, Jan E.;Pandey, Sudhir Kumar;Singh, R.S.;Giri, B.S.;Brown, Richard J.C.;Lee, S.H.
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.139-152
    • /
    • 2017
  • Excessive amounts of volatile organic compounds (VOCs) and odorants discharged into the environment are highly dangerous to human health as well as to ecological systems. Biological treatments of waste gas streams, called biofiltration, containing VOCs and odorous compounds has gained much attention because biofilters are more cost effective and environmentally friendly than conventional air pollution control technologies. This review provides an overview of biotrickling filtration, which is a type of biofiltration including continuous trickled-water flow inside filter media, for VOC and odor abatement. The configuration, design, cost effectiveness, removal capacity and environmental impact of this techniques and the future research and development needs in this area are all considered.